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Conversations with an Al gynecologist:
design of an explainable medical
decision support tool
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It's me, hi!

Former neuroscientist %
Former ML specialist

Former R&D in Computer Vision
Current CTO @ SynDiag

| like:

e Ops (any ops!)
e Cloud

e [terations
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A few facts about )XZX(SynDiag:

Launched in 2018

3 founders

9 people

PoliTO Spin Off

5 |Ps protected in 5+ countries
2 products

1.7/M raised in 2023
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Al In Healthcare:

Imaging and Diagnostics
Predictive Analytics
Personalized Medicine
Virtual Health Assistants
Administrative Workflow
Remote Monitoring
Clinical Decision Support

Goals:

Efficacy and accuracy
Efficiency and costs reduction
Personalized care
Discovering new patterns

improcve
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Types of Al in Healthcare

Machine Learning (ML)

Deep Learning (DL)

The new wave: foundation models/ large language
models/ generative Al for fully anonymized data
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)XZX(SynDiag

United against
ovarian cancer.
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Morfologia completa

Campi da compilare manualmente:

OvVAI case study

Cistico

Classific

OvAi X Unif

A Attenzione

OvAi X non & un dispositivo medicale per la diagnosi o il trattamento di qualsiasi condizione medica e non deve essere usato per finalitz

Diagnosi Video completo

Benigno

. - - Nume
Biopsia Virtuale 1
serous_cystadenoma

mucinous_cystadenoma

dermoid

tecoma-fibroma_group

endometrioma

Chiudi Calcola la biopsia virtuale
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OvVAI case study:

Diagnostic support for gynecological tumors

Visual tumor
description

Printable
ultrasound
report

Diagnostic
suggestion

improcve
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OvAI case study

Shadow Al Full
mode assistance automation

improcve
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Main features of OVAI:

Transparency
Modularity
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Transparency by design

Malignant
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Transparency by design

Limits of XAl (es. GradCam)

Attention only approaches
' ' bty Probability of
P W malignancy: Low

———— Predict: Benign

Because: =——

No other context
provided
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https://www.nature.com/articles/s42256-021-00423-x
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Transparency by design

The importance of domain knowledge

|AIA-BL Probability of

; \ malignancy:
et
VR e € like malignancy score

Indistinct

. Predict: Benign
margin

. J
% looks : " adds Because: mass
@ S — —p -] .3 tO ) .
O |ike has primarily

Circumscribed malignancy score circumscribed

margin margin

improcve


https://www.nature.com/articles/s42256-021-00423-x
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Transparency by design
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Transparency by design

Real

Official
diagnostic
guidelines
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Visual tumor

Transparency by design

Real
Data

Official
diagnostic
guidelines

OvVAI
Explainable
output
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Pillars of responsible Al

Privacy and security

Fairness and inclusion
Robustness and safety
Transparency and control
Accountability and governance

Summary from , , , , , resources -
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https://ai.meta.com/responsible-ai/
https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai?view=azureml-api-2
https://ai.google/responsibility/principles/
https://www.ibm.com/topics/responsible-ai
https://openai.com/index/moving-ai-governance-forward/
https://aws.amazon.com/machine-learning/responsible-ai/?nc1=h_ls
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Modularity in OvAI

ROI detection D'aQ”OSt'C_ClaSS
suggestion
Visual Tumor
description identification
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I\/Iodularlty in OVAI

10.00 - 2.90
Pwr 100 G
S

Benign
VS
Malignant
Diagnostic class

ROI detection |
suggestion

Visual Tumor
_ description identification

Mucinous
Cystadenoma
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Modularity in OvAI

Pros: Cons:

e Specific tasks and e Integration
technologies e Overall performance

e \Work with limited resources e Maintenance

e Reuse modules e Coupling

e Regulatory requirements
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Product architecture

ELE] AWS Clou

AMQP
User raequest
Elaboration essage
Request

e

AMQP
Response
Message

Process Data

+ Rabbit MQ instance

Amazon CloudWatch

Enqueued ! b
message = ' Process | | Process
trigger . request i | Trigger

0~ O
e

0o_0O
Process Queue Orchestrator

Message Routing

Bad Request
Response i
Process

Process Response !
; state

' B

MongoDB Amazon S3

Processing
request
stepn

Response
for request
step n

Update the size of the

autoscaling group
based on the number of

processing requests enqueued

Stepn
metadata

Stepn
response |

Stepn
response queue

Read/write
step elaboration
data
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Used dataset:

~800 clinical cases from 7 hospital partners
55% benign, 33% malignant, 12% BOT cases
~5 videos, ~6 Images per case
15 histotypes

m dermoid

simple_cyst-functional_cyst

m mucinous_borderline

epithelial_invasive

endometrioma

m other_non_ovarian

other_borderline

metastasis

m cystadenoma-fibroma

hydrosalpinx

1 serous_borderline

nonepithelial_invasive

fibroma

rare_benign_tumor

m unknown_borderline
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Solution development

e Python/ TensorFlow, PyTorch, Scikit-learn
e Algorithms: UNet, CNN, random forest, ...
e Cross validation on AWS batch

o Gitlab, Weight&Biases
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Modules performance

ROI detection

Detection of lesion:
sensitivity 80%, specificity 97%

Segmentation of lesion
DICE: 88%
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Modules performance

Tumor

Sonolo- AUC

gist

Experts
A 0.92247
B 0.86109
C 0.88199

Consensus
opinion

identification

Senior trainees

Accuracy: 77% .

0.85506

81 (134/166)

Junior trainees

Sensitivity: 88% -
Specificity: 95%

G
H 0.72664
I 0.79464

Accuracy
n (%)

89 (147/166)
82 (136/166)
83 (138/166)

85 (141/166)

80 (133/166)

78 (129/166)
72 (120/166)
70 (117/166)
75 (125/166)

95%
CI

83-93
75-87
77-88

79-90

73-85
74-86

71-83
65-79
63-77
68-81

p

0.1441
0.1779

0.0455
0.0014
0.0004
0.0114

Sensitivity
n (%)

86 (60/70)
86 (60/70)
80 (56/70)

83 (58/70)

84 (59/70)
70 (49/70)

70 (49/70)
74 (52/70)
86 (60/70)
73 (51/70)

p value refers to the comparison with the consensus opinion.

95%
Cl

76-92
76-92
69-88

72-90

74-91
58-79

58-79
63-83
76-92
61-82

p

0.7630
0.0201

0.0290
0.1336
0.6171
0.0896

Specificity
n (%)

91 (87/96)
79 (76/96)
85 (82/96)

86 (83/96)

77 (74/96)
89 (85/96)

83 (80/96)
71 (68/96)
59 (57/96)
77 (74/96)

83-95
70-86
77-91

78-92

18-84
11-93

75-89
61-79
49-69
68-84

0.0389
0.5637

0.4913
0.0039
<0.0001
0.0606

LR+
(95% CI)

9.14 (5.03-17.25)
4.11 (2.81-6.23)
5.49 (3.41-9.12)

6.12 (3.74-10.36)

3.68 (2.56-5.45)
6.11 (3.52-10.95)

4.20 (2.67-6.81)
2.55 (1.83-3.62)
2.11 (1.65-2.77)
3.18 (2.18-4.77)

Table 2. Accuracy, sensitivity, specificity, positive and negative LR with regard to malignancy of subjective evaluation of static ultra-
sound images by observers with varying levels of ultrasound experience

LR-
(95% CI)

0.16 (0.09-0.27)
0.18 (0.10-0.31)
0.23 (0.14-0.36)

0.20 (0.12-0.32)

0.20 (0.12-0.34)
0.34 (0.23-0.47)

0.36 (0.24-0.51)
0.36 (0.23-0.54)
0.24 (0.12-0.47)
0.35 (0.23-0.51)

Consensus opinion is defined as the diagnosis suggested by at least 2 of the 3 experts.
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https://karger.com/goi/article-abstract/69/3/160/149393/Ultrasound-Experience-Substantially-Impacts-on
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Deployment in clinical environment

e Access through a webapp
e Data can be dragged and drop or sent from the ultraseund
machine

Remote/On

premise
DICOM server

AP| for data Data available

sorting on user profile

improcve
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Challenges in Al in Healthcare:

Data quality and availability

Model biases

GDPR and data management

Regulatory requirements

Cost and resource requirements

Integration into existing systems (e.g. where will it be deployed)
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