

Credimi

Italian startup based in Milan born in 2016
Leader digital lender in continental Europe
1.5B € loans

Time to market for new features decreases
Developers focus on delivering business value

What we got wrong
What we want to improve

Highlights

Once upon a time...

Once upon a time...

Once upon a time...

Once upon a time...
Should we

run away as
far as

possible? Definitively

Developers
Needs

Versatility

Bringing a new feature live should be
easy

Go fast

Quick release cycles to bring features
to our customers

Focus on value

Developers should focus on core
features, not boilerplate

Credimi 1.0

Problems
with
Credimi 1.0

No schema

No easy way for frontend
and backend to share schema

Boilerplate

At API and Nginx layer

Authorization

Field level authorization not easy
to achieve

Heavy APIs

Representation of some resources
required heavy computations
on the backend

Frontend stack
maintainability

Suffers of a low developer experience
and so maintainability

Credimi was in continue evolution

In the meanwile...

Credimi 1.1

Credimi 1.1

Credimi 1.1

Credimi 2.0

Opportunity CQRS

Clearly separate concerns while
obtaining potentially different read
models for each use case

Event sourcing

Exploit Kafka as event collector to
create a read side database

Modernize the stack

Take advantage of GraphQL to solve
our issues with boilerplate,
authorization, heavy queries

Modernize the stack

Takes advantages of React
community and Apollo ecosystem to
improve maintanability

Aggregated data
sources

One place to get the data the
frontend needs (read side, legacy api,
external datasources)

Code generation
tools

Exploits GraphQL schema to generate
TypeScript types

Opportunity

Credimi 2.1

Exposing
the read side Easy to work with

For both backend and frontend

Seamless integration

Dockerized tool easy to set up and to
integrate with the existing
architecture

Great community

Transparency and easy to work with

Credimi 3.0

New frontend
stack

Smooth transition
features

The old stack hosts the new one (with
iframe) for a smooth transition

Graphql Gateway

Using Apollo Server to stiching
severals schema into one

Integrated toolchain

Several toolchain available out of the
box for every need

Let's take a look
at the developer
experience now

What are the involved entities
Which properties are exposed
Who can see those properties

The developers agree on the resource
Graph

Schema agreement
scalar VatCode
type Contact {
 name: String!
 lastName: String!
}
type Company {
 vatCode: VatCode!
 contacts: [Contact]
}

Dev environment setup

A new namespace on k8s with all the needed
microservices
A dedicated PostgreSQL database
A Hasura instance

The backend developer brings up a new environment

Hasura insights

Database setup

The backend developer applies to the
database any migration if needed

The metadata are then exported and
versioned
Every new development can check the
validity of both migrations and authorization

The backend developer configure field level
authorization on Hasura

Auth configuration

In the meanwhile...

We can plug Apollo to the running Hasura to fetch the
schema
We exploit Apollo mocks to get data based on the schema
If anything needs to change they can act on Hasura UI and
then put those changes under versioning

The frontend developer can start developing with mocks as
soon as the schema from Hasura is ready

Aggregated data

Learnings

Better domain comprehension

The exercise of creation of the Graph has improved our
big picture vision

More focus

No boilerplate, focus on delivering value

Performance improved

APIs responds in ms, not seconds

Authorization improved

Easy control on who can access what

Time to market improved

Hours, not days, to ship features changes

What we got
wrong

One model to rule them all

The Q in CQRS got a wrong twist

Opinionated framework

Keeping workaround when the framework
catches up

Apollo not on steroids

As a result of CQRS need of a more complex
management of reads/write

Unmanaged solution

Hasura keeps evolving, we are not

Next steps
One model per use case

For real

Anticorruption layer

Separating Hasura's models from the outside world

Managed solution

Going Hasura cloud

Apollo as its best

Keeping exploiting optimistic UI

Any questions?

