
Nicola Iarocci MVP

Playwright
Reliable end-to-end testing for modern web apps

Source: https://bit.ly/3BAsBmZ (testim.io)

“Most companies do not have automated end-to-end
tests running as part of their CI process. We are at a
point where most now have unit tests (yay!) but few
have automated end-to-end tests”

“Most companies we polled (85% out of 284) perform
manual end-to-end tests as part of their release
process. This makes releasing software significantly
slower and more error-prone”

Source: https://bit.ly/3BAsBmZ (testim.io)

open-source
Made by Microsoft, with strong industrial support (Google, etc.)

github.com/microsoft/playwright

cross-browser
Playwright supports all modern rendering engines including Chromium, WebKit, and Firefox

test mobile web
Native mobile emulation of Google Chrome for Android and Mobile Safari

cross-platform
Test on Windows, Linux, and macOS, locally or on CI, headless or headed

cross-language
TypeScript, JavaScript, Python, .NET, Java

One API
The exact same API is available across all supported languages

Demo: Our first application
https://playwright.dev/dotnet/docs/intro#first-project

Create a project
Add Playwright package and install required browsers

You can choose to only install certain browsers: ‘playwright install chrome’ will only install chromium

Our first application
Navigate to a web page and take a screenshot

‘playwright.Firefox.LaunchAsync()’ would launch Firefox instead

Headless or headed
By default Playwright runs the browser in headless mode

To see the browser UI, pass the Headless = false flag while launching the browser. You can also use slowMo to slow down execution.

Demo: Our first test
https://playwright.dev/dotnet/docs/test-runners

NUnit
You can choose to use NUnit test fixtures that come bundled with Playwright

Install dependencies, build project and download necessary browsers. This is only done once per project.

Test Fixtures

These fixtures support running tests on multiple browser engines in parallel, out of the box.

GUI Tool with Superpowers

• Codegen (automatic test authoring)

• Debugging

Inspector

Codegen
Playwright comes with the ability to generate tests out of the box

Opens the Inspector on the target page and generates code as you interact with the page

Demo: Codegen
Browse a page and see the Inspector generate code for you

Debugging
Set the PWDEBUG environment variable to run your scripts in debug mode

This configures Playwright for debugging, opens the inspector, and launches your tests

Debugging
Set the PWDEBUG environment variable to run your scripts in debug mode

When PWDEBUG=1 is set, Playwright Inspector window will be opened and the script will be paused on the first Playwright statement

Debugging
Set the PWDEBUG environment variable to run your scripts in debug mode

When stopped on an input action such as click, the exact point Playwright is about to click is highlighted with the large red dot on the inspected page

Debugging
Set the PWDEBUG environment variable to run your scripts in debug mode

By the time Playwright has paused on that click action, it has already performed actionability checks that can be found in the log

Demo: Debugging
Use the Inspector to step-by-step debug your test script

Command Line

Preserve authenticated state

Run codegen with --save-storage to save cookies and localStorage at the end of the session.

This is useful to separately record authentication step and reuse it later in the tests.

Preserve authenticated state

Run with --load-storage to consume previously loaded storage.

This way, all cookies and localStorage will be restored, bringing most web apps to the authenticated state.

Emulate geolocation, language and timezone
Via codegen and CLI

Emulate devices

You can record scripts and tests while emulating a device.

Emulate color scheme and viewport size

You can record scripts and tests while emulating a device.

API

Preserve authenticated state

Authentication
Playwright can be used to automate scenarios that require authentication

Emulate geolocation, language and timezone
Programmatically, via customized Browser contexts

Assertions
Text content

Assertions
Inner text

Assertions
Checkbox values

Assertions
JS expressions

Assertions
Inner HTML

Assertions
Visibility

Assertions
Enbaled state

Assertions
Custom assertions

Browser Contexts
A BrowserContext is an isolated incognito-alike session within a browser instance

Browser contexts are fast and cheap to create. If you are using Playwright Test, this happens out of the box for each test. Otherwise, you can create
browser contexts manually, like above

Multiple contexts
Playwright can create multiple browser contexts within a single scenario

This is useful when you want to test for multi-user functionality, like chat. Browser contexts are isolated environments on a single browser instance.

Emulation
Playwright comes with a registry of device parameters for selected mobile devices.

All pages created in the context above will share the same device parameters.

Events
Waiting for event

Wait for a request with the specified url

Events
Waiting for event

Wait for popup window

Events
Adding/removing event listener

Sometimes, events happen in random time and instead of waiting for them, they need to be handled. Playwright supports traditional language
mechanisms for subscribing and unsubscribing from the events.

Screenshots

Videos
Playwright can record videos for all pages in a browser context

Trace Viewer
Playwright Trace Viewer is a GUI tool that helps exploring recorded Playwright traces after the script ran

Recording a trace
Traces can be recorded using the BrowserContext.Tracing API

Viewing a trace
You can open the saved trace using Playwright CLI or in your browser on trace.playwright.dev

When tracing with the
screenshots option turned on,

each trace records screencast and
renders it as a film strip. You can
hover over the film strip to see a

magnified image.

You can also open remote traces
(produced by your CI, for example)

Viewing a trace
You can open the saved trace using Playwright CLI or in your browser on trace.playwright.dev

When tracing with the snapshots
option turned on, Playwright

captures a set of complete DOM
snapshots for each action. Notice
how it highlights both, the DOM
Node as well as the exact click

position.

You can also open remote traces
(produced by your CI, for example)

Continous Integration
Playwright tests can be executed in CI environments

Example of GitHub Action CI workflow

Feature and performance comparison
OK, I’ll shortcut on this one

• Puppeteer, Selenium, Playwright, Cypress – how to choose?  
https://bit.ly/3h6NtIU

• Cypress vs Selenium vs Playwright vs Puppeteer speed comparison 
https://bit.ly/3LNmFvD

• Playwright Vs. Puppeteer Vs. Selenium: What are the differences?  
https://bit.ly/3I6qNEB

Nicola Iarocci MVP

That’s all folks!
Find me at my website nicolaiarocci.com or @nicolaiarocci

