Playwright

“Most companies do not have automated end-to-end
tests running as part of their Cl process. We are at a
point where most now have unit tests (yay!) but few
have automated end-to-end tests”

Source: https://bit.ly/3BAsBmZ (testim.io)

“Most companies we polled (85% out of 284) perform
manual end-to-end tests as part of their release
process. This makes releasing software significantly
slower and more error-prone”

Source: https://bit.ly/3BAsBmZ (testim.io)

open-source

Made by Microsoft, with strong industrial support (Google, etc.)

github.com/microsoft/playwright

Cross-browser

Playwright supports all modern rendering engines including Chromium, WebKit, and Firefox

\ SR
§ 2
% >
2>

test mobile web

Native mobile emulation of Google Chrome for Android and Mobile Safari

cross-platform

Test on Windows, Linux, and macOS, locally or on Cl, headless or headed

cross-language

TypeScript, JavaScript, Python, .NET, Java

One API

The exact same API is available across all supported languages

Demo: Our first application

Create a project
Add Playwright package and install required browsers

Create project
dotnet new console -n PlaywrightDemo
cd PlaywrightDemo

Add project dependency

dotnet add package Microsoft.Playwright

Build the project
dotnet build

Install Playwright CLI tools (you can also use PowerShell)
dotnet tool install --global Microsoft.Playwright.CLI
Install required browsers

playwright install

You can choose to only install certain browsers: ‘playwright install chrome’ will only install chromium

Our first application

Navigate to a web page and take a screenshot

using Microsoft.Playwright;
using System.Threading.Tasks;

class Program

{

public static async Task Main()

{

using var playwright = await Playwright.CreateAsync();

awalt using var browser = await playwright.Chromium.LaunchAsync();

var page = awalt browser.NewPageAsync();

awailt page.GotoAsync("https://playwright.dev/dotnet");

await page.ScreenshotAsync(new PageScreenshotOptions { Path = "screenshot.png" });

dotnet run

‘playwright.Firefox.LaunchAsync()’ would launch Firefox instead

Headless or headed

By default Playwright runs the browser in headless mode

awailt playwright.Chromium.LaunchAsync(new BrowserTypeLaunchOptions

{

Headless = false,
SlowMo = 50,

I3E

To see the browser Ul, pass the Headless = false flag while launching the browser. You can also use slowMo to slow down execution.

Demo: Our first test

NUnit

You can choose to use NUnit test fixtures that come bundled with Playwright

Create new project.
dotnet new nunit -n PlaywrightTests
cd PlaywrightTests

Add project dependency

dotnet add package Microsoft.Playwright.NUnit
Build the project
dotnet build

Install required browsers
playwright install

Install dependencies, build project and download necessary browsers. This is only done once per project.

Test Fixtures

using System.Threading.Tasks;
using Microsoft.Playwright.NUnit;
using NUnit.Framework;

namespace PlaywrightTests

{
[Parallelizable(ParallelScope.Self)]

public class Tests : PageTest
{
[Test]
public async Task ShouldAdd()

{

int result = await Page.EvaluateAsync<int>("() => 7 + 3");
Assert.AreEqual(10, result);
}

[Test]
public async Task ShouldMultiply()

{

int result = await Page.EvaluateAsync<int>("() => 7 * 3");
Assert.AreEqual(21, result);

dotnet test -- NUnit.NumberOfTestWorkers=5

These fixtures support running tests on multiple browser engines in parallel, out of the box.

Inspector

GUI Tool with Superpowers

« Codegen (automatic test authoring)

 Debugging

[Playwright Inspector

® Record [1> < testjsv =
11 await page.goto("https://github.com/microsoft’);
12

13 // Click input[aria-label="Find a repository.."]

14 await page.click('input[aria-label="Find a repository.."]"');
15

16 // Fill input[aria-label="Find a repository.."]

17 await Promise.all([

18 page.waitForNavigation(/*{ url: "https://github.com/microsoft?g=playwright&type=(
19 page.fill('input[aria-label="Find a repository.."]', 'playwright')

20 D

21

22 // Click //a[normalize-space(.)="playwright']

23 await page.click('//a[normalize-space(.)=\"playwright\']"');

24 // assert.equal(page.url(), 'https://github.com/microsoft/playwright');
25

26 // Click text="Issues"

27 await Promise.all([

28 page.waitForNavigation(/*{ url: "https://github.com/microsoft/playwright/issues
29 page.click('text="Issues"")

30 1

31 await page.pause();

32

33 // Click text="triaging"
34 await Promise.all([
35 page.waitForNaviaation(/*{ url: "httpos://aithub.com/microsoft/vlavwriaht/issues?

@ Explore | //a[normalize-space(.)="playwright']

> page.goto(https://github.com/microsoft) v/ — 1.3s

> page.click(input[aria-label="Find a repository..."]) v/ — 135ms
> page.waitForNavigation v/ — 4.6s

> page fill(input[aria-label="Find a repository..."]) v/ — 69ms

v page.click(//a[normalize-space(.)="playwright']) 11

waiting for selector "//a[normalize-space(.)='playwright']"

Codegen

Playwright comes with the ability to generate tests out of the box

const context = await browser.newContext({
viewport: {
width: 8ee,
height: 688

}
B;

const page = await context.newPage();

await page.goto(

await page.click(

A playwright or dramatist is a person who

Contents (] 4 await page.fill(

await page.press(

await page.press(

playwright codegen wikipedia.org

Opens the Inspector on the target page and generates code as you interact with the page

Demo: Codegen

Debugging

Set the PWDEBUG environment variable to run your scripts in debug mode

PWDEBUG=1 dotnet test

This configures Playwright for debugging, opens the inspector, and launches your tests

Debugging

Set the PWDEBUG environment variable to run your scripts in debug mode

22 (‘) ; ‘
23 await page.click('//a[normalize-space(.)=\"playwright\']");
24 1 (ft/p

When PWDEBUG=1 is set, Playwright Inspector window will be opened and the script will be paused on the first Playwright statement

Debugging

Set the PWDEBUG environment variable to run your scripts in debug mode

play@ight

//a[normalize-space(.)="playwright
@ TypeScript 3|8 Apache-20 %

.]'xand

When stopped on an input action such as click, the exact point Playwright is about to click is highlighted with the large red dot on the inspected page

Debugging

Set the PWDEBUG environment variable to run your scripts in debug mode

@ Playwright Inspector

® Record [1> S testjsv =
20 D;

21

22 // Click //a[normalize-space(.)="playwright']

23 await page.click('//a[normalize-space(.)=\"playwright\']");

24 // assert.equal(page.url(), 'https://github.com/microsoft/playwright');

25

2c ([Clacle ot "Tecine"

@ Explore | //a[normalize-space(.)='playwright']

v page.click(//a[normalize-space(.)="'playwright']) 11
waiting for selector "//a[normalize-space(.)="playwright']"
selector resolved to visible +
attempting click action
waiting for element to be visible, enabled and stable
element is visible, enabled and stable
scrolling into view if needed
done scrolling
checking that element receives pointer events at (198.53,436)
element does receive pointer events

performing click action

By the time Playwright has paused on that click action, it has already performed actionability checks that can be found in the log

Demo: Debugging

Command Line

Preserve authenticated state

playwright codegen --save-storage=auth. json

Perform authentication and exit.

auth.json will contain the

Run codegen with --save-storage to save cookies and localStorage at the end of the session.
This is useful to separately record authentication step and reuse it later in the tests.

Preserve authenticated state

playwright open --load-storage=auth.json my.web.app

playwright codegen --load-storage=auth.json my.web.app

t Perform actions in authenticated state.

Run with --load-storage to consume previously loaded storage.
This way, all cookies and localStorage will be restored, bringing most web apps to the authenticated state.

Emulate geolocation, language and timezone
Via codegen and CLI

Emulate timezone, language & location
Once page opens, click the "my location"” button to see geolocation in action

playwright codegen \

--timezone="Europe/Rome" \
--geolocation="41.890221,12.492348" \
--lang="1t-IT" maps.google.com

Emulate devices

t Emulate 1Phone 11.

playwright codegen --device="1Phone 11" wikipedia.org

You can record scripts and tests while emulating a device.

Emulate color scheme and viewport size

Emulate screen size and color scheme.

playwright codegen --viewport-size=800,600 --color-scheme=dark twitter.com

You can record scripts and tests while emulating a device.

API

Preserve authenticated state

// Save storage state into the file.
awalt context.StorageStateAsync(new BrowserContextStorageStateOptions

{

Path = "state.json"

});

// Create a new context with the saved storage state.
var context = await browser.NewContextAsync(new BrowserNewContextOptions

{

StorageStatePath = "state.json"

});

Authentication

Playwright can be used to automate scenarios that require authentication

var page = awailt context.NewPageAsync();

awailt page.NavigateAsync("https://github.com/login");
// Interact with login form

awailt page.ClickAsync("text=Login");

awailt page.FillAsync("input[name='login']", USERNAME);
awailt page.FillAsync("input[name="'password']", PASSWORD);
awailt page.ClickAsync("text=Submit");

// Verify app is logged in

Emulate geolocation, language and timezone
Programmatically, via customized Browser contexts

using Microsoft.Playwright;
using System.Threading.Tasks;

class PlaywrightExample
{

public static async Task Main()

{

using var playwright = await Playwright.CreateAsync();
await using var browser = await playwright.Webkit.LaunchAsync();
var options = new BrowserNewContextOptions(playwright.Devices["iPhone 11 Pro"])

{
Geolocation new() { Longitude = 12.492507f, Latitude = 41.889938f },

Permissions = new[] { "geolocation" },
Locale = "de-DE"

}s

awailt using var context = await browser.NewContextAsync(options);
var page = await browser.NewPageAsync();

Assertions

Text content

var content = await page.TextContentAsync("nav:first-child");

Assert.AreEqual("home", content);

Assertions

Inner text

var content = await page.InnerTextAsync(".selected");

Assert.AreEqual("value", content);

Assertions

Checkbox values

var checked = await page.IsCheckedAsync("“input");

Assert.True(checked);

Assertions

JS expressions

var result = await page.EvaluateAsync<int>("([x, y]) => Promise.resolve(x * y)", new[] { 7, 8 });

Console.WriteLine(result);

Assertions
Inner HTML

var html = await page.InnerHTMLAsync("div.result");

Assert.AreEqual("<p>Result</p>", html);

Assertions
Visibility

var visibility = await page.IsVisibleAsync("input");

Assert.True(visibility);

Assertions
Enbaled state

var enabled = awailt page.IsEnabledAsync("“input");

Assert.True(enabled);

Assertions

Custom assertions

// Assert local storage value
var userId = await page.EvaluateAsync<string>("() => window.localStorage.getItem('userId')");
Assert.NotNull(userId);

// Assert value for input element
var value = awailt page.Locator("#search").InputValueAsync();
Assert.AreEqual("query", value);

// Assert computed style

var fontSize = await page.Locator("div").EvalOnSelectorAsync<string>("el =>
window.getComputedStyle(el).fontSize");

Assert.AreEqual("16px", fontSize);

// Assert list length
var length = await page.Locator("li.selected").CountAsync();
Assert.AreEqual(3, length);

Browser Contexts

A BrowserContext is an isolated incognito-alike session within a browser instance

awalt using var browser = playwright.Chromium.LaunchAsync();

var context = await browser.NewContextAsync();
var page = awailt context.NewPageAsync();

Browser contexts are fast and cheap to create. If you are using Playwright Test, this happens out of the box for each test. Otherwise, you can create
browser contexts manually, like above

Multiple contexts

Playwright can create multiple browser contexts within a single scenario

using Microsoft.Playwright;
using System.Threading.Tasks;

class Program

{

public static async Task Main()

{

using var playwright = await Playwright.CreateAsync();

// Create a Chromium browser 1instance

awailt using var browser = await playwright.Chromium.LaunchAsync();
awailt using var userContext = await browser.NewContextAsync();
awalt using var adminContext = await browser.NewContextAsync();

// Create pages and interact with contexts independently.

This is useful when you want to test for multi-user functionality, like chat. Browser contexts are isolated environments on a single browser instance.

Emulation

Playwright comes with a registry of device parameters for selected mobile devices.

using Microsoft.Playwright;
using System.Threading.Tasks;

class Program

{

public static async Task Main()

{

using var playwright = await Playwright.CreateAsync();

awalt using var browser = await playwright.Chromium.LaunchAsync(new BrowserTypeLaunchOptions

{

Headless: False
});
var pixel2 = playwright.Devices["Pixel 2"];
awalt using var context = await browser.NewContextAsync(pixel2);

All pages created in the context above will share the same device parameters.

Events

Waiting for event

var wailtForRequestTask = page.WaitForRequestAsync("**/*logo*.png");
awalt page.GotoAsync("https://wikipedia.org");

var request = await waitForRequestTask;
Console.WriteLine(request.Url);

Wait for a request with the specified url

Events

Waiting for event

var popup = await page.RunAndWaitForPopupAsync(async =>

{

awalt page.EvaluateAsync("window.open()");

1)
awailt popup.GotoAsync("https://wikipedia.org");

Wait for popup window

Events

Adding/removing event listener

page.Request += (_, request) => Console.WriteLine("Request sent:
void listener(object sender, IRequest request)

{

+ request.Url);

Console.WriteLine("Request finished: " + request.Url);

}s

page.RequestFinished += listener;
awailt page.GotoAsync("https://wikipedia.org");

// Remove previously added listener.
page.RequestFinished -= listener;
awailt page.GotoAsync("https://www.openstreetmap.org/");

Sometimes, events happen in random time and instead of waiting for them, they need to be handled. Playwright supports traditional language
mechanisms for subscribing and unsubscribing from the events.

Screenshots

// Page screenshot
var bytes = await page.ScreenshotAsync();

// Single element screenshot
awailt page.Locator(".header")
.ScreenshotAsync(new LocatorScreenshotOptions { Path = "screenshot.png" });

Videos

Playwright can record videos for all pages in a browser context

var context = await browser.NewContextAsync(new BrowserNewContextOptions

{

RecordVideoDir = "videos/",
RecordVideoSize = new RecordVideoSize() { Width = 640, Height = 480 }

});
// Make sure to close, so that videos are saved.
awalt context.CloseAsync();

Trace Viewer

Playwright Trace Viewer is a GUI tool that helps exploring recorded Playwright traces after the script ran

Playwright Trace Viewer

0 200ms 400ms 600ms

Actions
page.goto https://github.com/microsoft
page.click [placeholder="Find a repository..."]
page.fill [placeholder="Find a repository..."]
page.waitForNavigation
page.waitForNavigation
page.click text=Issues
page.click [placeholder="Search all issues"]
page.fill [placeholder="Search all issues"]
page.waitForNavigation

page.press [placeholder="Search all issues"]

800ms

1.0s 1.2s 1.4s 1.6s

1.8s

page.click a:has-text("playwright")

Action

Before

After

Q playwright

10 results for repositories matching playwright sorted by last updated Clear fiter

playwi@ht.dev
Dac !

playwright-sha

Top languages

P

[V- VW

3% ‘:‘.‘

Log Source Network

waiting for selector "a:has-text("playwright"
selector resolved to visible <a class="d-inli
attempting click action
waiting for element to be visible, enabled ar
element is visible, enabled and stable
scrolling into view if needed
done scrolling
checking that element receives pointer eve
element does receive pointer events
performing click action
click action done
waiting for scheduled navigations to finish
navigated to "https://github.com/microsoft/|

navigations have finished

e —————————————————

Recording a trace

Traces can be recorded using the BrowserContext.Tracing API

awalt using var browser playwright.Chromium.LaunchAsync();
awalt using var context awalt browser.NewContextAsync();

// Start tracing before creating / navigating a page.
awalt context.Tracing.StartAsync(new TracingStartOptions
{

Screenshots = true,
Snapshots = true

}),

var page = context.NewPageAsync();
awalt page.GotoAsync("https://playwright.dev");

// Stop tracing and export 1t into a zip archive.
awalt context.Tracing.StopAsync(new TracingStopOptions

{

Path = "trace.zip"

});

Viewing a trace

You can open the saved trace using Playwright CLI or in your browser on trace.playwright.dev

playwright show-trace trace.zip

O Why GitHub? Team Enterprise Explore Marketplace Pricing Searc Signin | Signup

. __ Microsoft

. @ Raomono, WA (@ hetps:/fopensaurce.microsaft com W @OpenatMicrasoft) opensource@micrasoft.com | Verified
] Repositories 41k Packages People 4.5k Projects 13 Sponsoring 9
. i 2 playwr :*d Type ~ Language ~ Sort ~
When tracing with the
screenshots Optlon turned On, 10 results for repositories matching playwright sorted by last updated Clear filter
each trace records screencast and Top languages
renders it as a film strip. You can @Cr @ Typescript @ Python
hover over the film strip to see a playwright.dev avaScript @ C++
magnlfled Image Documentation website for Playwright

Most used topics

playwrlght machine-learning typescriot
Node.js library 10 automate Chromium, Firefox and WebKit with a single A
tron avascnpt testing firatox chroma automator web
You can also open remote traces ® ypescript &R Apache-20 ¥ 987 ¥ 24,357 o 1 pdated 3 minutes 8go People

(produced by your Cl, for example) e ﬁ ‘) a Q

N P P N A

Viewing a trace

You can open the saved trace using Playwright CLI or in your browser on trace.playwright.dev

Before After

. Microsoft

Open source projects and samples from Microsoft

playwright show-trace trace.zip |iah

. ® Redmond, WA 6-7 https://opensource.microsoft.com y @OpenAtMicrosoft 3 opensource@microsoft.com (Verified
[Repositories 4.1k Packages People 4.5k Projects 13 Sponsoring 9
Q_ playwright Type ~ Language ~ Sort ~

10 results for repositories matching playwright sorted by last updated Clear filter

Top languages

When tracing with the snapshots
option turned on, Playwright @C# @ Typecript @ Python
captures a set of complete DOM playwi@ht.dev JavaScript @ C++

Documentation website for Playwright

JavaScript Y 22 w7 @ 2 1o Updated 2 minutes ago

snapshots for each action. Notice

how it highlights both, the DQM Most used topics
Node as well as the exact click e (ricroaaied (ovinon
posltlon playwrlght N ‘ A machine-learning typescript

Node.js library to automate Chromium, Firefox and WebKit with a single API

electron javascript testing firefox chrome automation web

@ TypeScript 88 Apache-2.0 % 987 Yy 24337 (D220 3923 Updated 3 minutes ago People 4.5k >
You can also open remote traces playwright-sharp _ [s@f_‘.\ &
.NET version of the Playwright testing and automation library. , < e §

(prOduced by your CI’ for example) firefox chrome automation csharp chromium webkit A | ‘m m ‘J

Continous Integration
Playwright tests can be executed in Cl environments

on:
deployment_status:
jobs:
test:
needs: docker
runs-on: ubuntu-latest
defaults:
run:
working-directory: test
steps:
- uses: actions/checkout@v2

- uses: actions/setup-dotnet@vl
with:

dotnet-version: 6.0.x
run: dotnet restore
name: Install Playwright gobal tools
run: dotnet tool install --global Microsoft.Playwright.CLI
run: dotnet build --configuration Release --no-restore
name: Install playwright for project
run: playwright install --with-deps
run: dotnet test --no-restore --verbosity normal
env:
PLAYWRIGHT_TEST_BASE_URL: 'https://my-test-deployment.com'

Example of GitHub Action CI workflow

Feature and performance comparison
OK, P’ll shortcut on this one

* Puppeteer, Selenium, Playwright, Cypress — how to choose?
https://bit.ly/3h6NtIU

» Cypress vs Selenium vs Playwright vs Puppeteer speed comparison
https://bit.ly/SLNmFvD

* Playwright Vs. Puppeteer Vs. Selenium: What are the differences?
https://bit.ly/316gNEB

That’s all folks!

