

INTRODUCTION	TO	F#INTRODUCTION	TO	F#
AND	FUNCTIONAL	PROGRAMMING	AND	FUNCTIONAL	PROGRAMMING	
FOR	THE	C#	DEVELOPERFOR	THE	C#	DEVELOPER

Nicola	Iarocci

Software	Craftsman,	MVP
	|	nicolaiarocci.com @nicolaiarocci

https://nicolaiarocci.com/
https://twitter.com/nicolaiarocci

DISCLAIMERDISCLAIMER
This	talk	is	based	on	the	excellent	work	byThis	talk	is	based	on	the	excellent	work	by

Scott	Wlaschin
	|	fsharpforfunandpro�t.com @ScottWlaschin

https://fsharpforfunandprofit.com/
https://twitter.com/ScottWlaschin

THE	GOAL	OF	THIS	TALKTHE	GOAL	OF	THIS	TALK
Is	just	to	demistify	F#	a	bitIs	just	to	demistify	F#	a	bit

You	can't	become	an	expert	in	an	hour

I'll	try	not	to	be	too	biased

Is	it	worth	the	effort	learning	a	new	language?Is	it	worth	the	effort	learning	a	new	language?

A	language	that	doesn't	affect	the	way	you	think	about
programming,	is	not	worth	knowing	-	Alan	Perlis

You	dont	really	want	to	invest	your	time	into
learning	new,	marginally	important	things

F#	is	a	language	that	will	change	the	way	you	think
about	programming

Don’t	trust	people	who	have	never	looked	at	it.
Don’t	bother.

https://en.wikipedia.org/wiki/Alan_Perlis

ABOUT	F#ABOUT	F#
Developed	by	Microsoft	Research

Shipped	with	Visual	Studio	2010
History	of	F#	@	https://fsharp.org/history/

Open	Source	@	https://github.com/dotnet/fsharp

Cross	platform	(Linux,	macOS,	Windows)
Works	with	VS	Code	and	other	editors

Very	active	and	friendly	community
Start	with	
F#	Slack	channel
#fsharp	on	Twitter

fsharp.org

https://fsharp.org/history/
https://github.com/dotnet/fsharp
https://fsharp.org/

DIFFERENCES	BETWEEN	C#	AND	F#DIFFERENCES	BETWEEN	C#	AND	F#
From	least	to	most	importantFrom	least	to	most	important

Concise	syntax

Type	inference

Different	defaults

Different	philosophy

UNIQUE	TO	F#UNIQUE	TO	F#
Functional	�rst

Algebraic	type	system

Interactivity

SYNTAXSYNTAX

Immutable	C#	class	we'll	use	as	an	exampleImmutable	C#	class	we'll	use	as	an	example

public class Person
{
 public Person(string name, DateTime birthday)
 {
 _name = name;
 _birthday = birthday;
 }

 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name
 {
 get { return _name; }
 }
 public DateTime Birthday
 {
 get { return _birthday; }
 }
}

Indentation	instead	of	curly	bracesIndentation	instead	of	curly	braces

Do	we	really	need	the	curly	braces?Do	we	really	need	the	curly	braces?

public class Person
{
 public Person(string name, DateTime birthday)
 {
 _name = name;
 _birthday = birthday;
 }

 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name
 {
 get { return _name; }
 }
 public DateTime Birthday
 {
 get { return _birthday; }
 }
}

Indentation	gives	us	all	the	clues	we	needIndentation	gives	us	all	the	clues	we	need

public class Person =

 public Person(string name, DateTime birthday) =

 _name = name;
 _birthday = birthday;

 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name =

 get { return _name; }

 public DateTime Birthday =

 get { return _birthday; }

Use	'='	to	start	blocksUse	'='	to	start	blocks

public class Person =

 public Person(string name, DateTime birthday) =

 _name = name;
 _birthday = birthday;

 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name =

 get { return _name; }

 public DateTime Birthday =

 get { return _birthday; }

Shift	up	to	use	less	vertical	spaceShift	up	to	use	less	vertical	space

public class Person =

 public Person(string name, DateTime birthday) =
 _name = name;
 _birthday = birthday;

 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name =
 get { return _name; }

 public DateTime Birthday =
 get { return _birthday; }

Python's	use	of	whitespace	stopped	feeling	unnatural	after
about	twenty	minutes.	I	just	indented	code,	pretty	much
as	I	would	have	done	in	a	C	program	anyway,	and	it
worked	-	Eric	S.	Raymond

https://en.wikipedia.org/wiki/Eric_S._Raymond

Automatically	create	backing	fields	fromAutomatically	create	backing	fields	from
constructor	parametersconstructor	parameters

A	lot	of	duplication...A	lot	of	duplication...

public class Person =

 // constructor arguments match the private fields
 public Person(string name, DateTime birthday) =
 // arguments values are assigned to backing fields
 _name = name;
 _birthday = birthday;

 // private fields declared
 private readonly string _name;
 private readonly DateTime _birthday;

 public string Name =
 // field value finally returned
 get { return _name; }

 public DateTime Birthday =
 // field value finally returned
 get { return _birthday; }

Use	the	constructor	params	directlyUse	the	constructor	params	directly

public class Person =

 public Person(string name, DateTime birthday) =
 ...

 public string Name =
 get { return name; }

 public DateTime Birthday =
 get { return birthday; }

Merge	the	primary	constructor	with	the	classMerge	the	primary	constructor	with	the	class
definitiondefinition

How	often	do	you	have	more	than	oneHow	often	do	you	have	more	than	one
constructor?constructor?

public class Person =

 // enquiring minds want to know
 public Person(string name, DateTime birthday) =
 ...

 public string Name =
 get { return name; }

 public DateTime Birthday =
 get { return birthday; }

Why	not	merge	the	constructor	with	the	classWhy	not	merge	the	constructor	with	the	class
definition?definition?

public class Person(string name, DateTime birthday) =

 public string Name =
 get { return name; }

 public DateTime Birthday =
 get { return birthday; }

Reduced	syntax	noiseReduced	syntax	noise

Class	is	immutable,	every	property	is	'get'	onlyClass	is	immutable,	every	property	is	'get'	only

public class Person(string name, DateTime birthday) =

 public string Name =
 get { return name; }

 public DateTime Birthday =
 get { return birthday; }

'get'	is	gone!'get'	is	gone!

public class Person(string name, DateTime birthday) =

 public string Name =
 return name;

 public DateTime Birthday =
 return birthday;

Who	even	likes	typing	semicolons	anyway?Who	even	likes	typing	semicolons	anyway?

public class Person(string name, DateTime birthday) =

 public string Name =
 return name;

 public DateTime Birthday =
 return birthday;

Semicolons	gone!Semicolons	gone!

public class Person(string name, DateTime birthday) =

 public string Name =
 return name

 public DateTime Birthday =
 return birthday

Implicit	'return'Implicit	'return'

F#	is	an	expression-oriented	languageF#	is	an	expression-oriented	language

public class Person(string name, DateTime birthday) =

 public string Name =
 return name

 public DateTime Birthday =
 return birthday

The	return	is	implict	for	the	last	line	in	a	blockThe	return	is	implict	for	the	last	line	in	a	block

public class Person(string name, DateTime birthday) =

 public string Name =
 name

 public DateTime Birthday =
 birthday

Members	are	public	by	defaultMembers	are	public	by	default

The	properties	are	immutableThe	properties	are	immutable

public class Person(string name, DateTime birthday) =

 public string Name =
 return name

 public DateTime Birthday =
 return birthday

No	explicit	'public'	is	neededNo	explicit	'public'	is	needed

class Person(string name, DateTime birthday) =

 string Name =
 return name

 DateTime Birthday =
 return birthday

Type	InferenceType	Inference

We	have	to	repeat	the	type?	Can't	the	compilerWe	have	to	repeat	the	type?	Can't	the	compiler
figure	it	out?figure	it	out?

class Person(string name, DateTime birthday) =

 // it's a string, we know from the constructor
 string Name =
 name

 // and this one, it ought to be a DateTime
 DateTime Birthday =
 birthday

The	answer	is	a	big	YES!The	answer	is	a	big	YES!

class Person(string name, DateTime birthday) =

 Name =
 name

 Birthday =
 birthday

Class	and	method	membersClass	and	method	members

the	'member'	keyword	indicates	class	membersthe	'member'	keyword	indicates	class	members

class Person(string name, DateTime birthday) =

 member this.Name =
 name

 member this.Birthday =
 birthday

'member'	also	defines	methods'member'	also	defines	methods

class Person(string name, DateTime birthday) =

 member this.Name =
 name

 member this.Birthday =
 birthday

 member this.Age() =
 var daysDiff = DateTime.Today.Subtract(birthday).Days
 daysDiff / 365

Type	annotationsType	annotations

In	C#,	types	come	before	nameIn	C#,	types	come	before	name

// all C-derivative languages use type-then-name syntax
class Person(string name, DateTime birthday) =

 member this.Name =
 name

 member this.Birthday =
 birthday

 member this.Age() =
 var daysDiff = DateTime.Today.Subtract(birthday).Days
 daysDiff / 365

In	F#,	types	come	after	nameIn	F#,	types	come	after	name

// most modern languages adopt type-then-name instead
class Person(name: string, birthday: DateTime) =

 member this.Name =
 name

 member this.Birthday =
 birthday

 member this.Age() =
 var daysDiff = DateTime.Today.Subtract(birthday).Days
 daysDiff / 365

Different	keywordsDifferent	keywords

In	C#,	we	use	'class'	and	'var'In	C#,	we	use	'class'	and	'var'

// 'class' identifies - you guessed it - a class
class Person(name: string, birthday: DateTime) =

 member this.Name =
 name

 member this.Birthday =
 birthday

 member this.Age() =
 // 'var' is C#'s type-inference declaration
 var daysDiff = DateTime.Today.Subtract(birthday).Days
 daysDiff / 365

In	F#,	we	use	'type'	and	'let'In	F#,	we	use	'type'	and	'let'

// 'type' identifies - you guessed it again! - F# types
type Person(name: string, birthday: DateTime) =

 member this.Name =
 name

 member this.Birthday =
 birthday

 member this.Age() =
 // 'let' is how you declare stuff in F#'s
 let daysDiff = DateTime.Today.Subtract(birthday).Days
 daysDiff / 365

Modern	C#	equivalent	with	auto-properties	andModern	C#	equivalent	with	auto-properties	and
expression-bodied	membersexpression-bodied	members

class Person(string name, DateTime birthday)
{
 public string Name { get; } = name;

 public DateTime Birthday { get; } = birthday;

 public int Age() => DateTime.Today.Subtract(birthday).Days / 365
}

// Actually, this does not work. Primary constructors was
// a short-lived feature that only existed in VS2014

surprising	similar
not	a	coincidence

Functional	approach:	separate	the	data	fromFunctional	approach:	separate	the	data	from
the	functionsthe	functions

type Person = {
 Name: string
 Birthday: DateTime
 }

let age person =
 let daysDiff = DateTime.Today.Subtract(person.Birthday).Days
 daysDiff / 365

// age : Person -> int
// (the inferred type of the function)

ObservationObservation
Syntax	is	never	the	most	important	thing	aboutSyntax	is	never	the	most	important	thing	about
a	programming	language.	But...a	programming	language.	But...

21	lines	of	code	has	shrunk	to	5	lines	of	code21	lines	of	code	has	shrunk	to	5	lines	of	code

You	write	1/3	as	much	codeYou	write	1/3	as	much	code

TYPE	INFERENCETYPE	INFERENCE

let doSomething f x =
 let y = f (x + 1)
 "hello" + y

// two parameters: f & x

let doSomething f x =
 let y = f (x + 1) // x must be an int
 "hello" + y

let doSomething f x =
 let y = f (x + 1)
 "hello" + y // y must be a string

let doSomething f x =
 let y = f (x + 1) // f must be a int -> string function
 "hello" + y

Inferred	type	of	doSomethingInferred	type	of	doSomething

f:(int -> string) -> x:int -> string

// 'f' is a function, it takes an int and returns a string;
// 'x' is an int;
// return value is a string

A	more	complex	exampleA	more	complex	example

// C# code
public IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)
{
...
}

// F# code
let GroupBy source keySelector =
 ...

Benefits	of	type	inferenceBenefits	of	type	inference

-	less	typing
-	less	noise
-	more	logic

DIFFERENT	DEFAULTSDIFFERENT	DEFAULTS

F#	has	different	defaultsF#	has	different	defaults

Immutable	by	default
mutable	is	a	special	case

Non-null	types/classes	by	default
nullable	is	a	special	case

Structural	equality	by	default
reference	equality	is	a	special	case

Everything	must	be	initialized
explicit	is	better	than	implicit	-	Zen	of	Python

Immutability	by	defaultImmutability	by	default

let x = 1

x <- 2 // Error: this value is not mutable

Immutability	by	defaultImmutability	by	default

let mutable x = 1

x <- 2 // OK

Not	nullable	by	defaultNot	nullable	by	default

type Person = {
 Name: string
 Birthday: DateTime
 }

let x : Person = null // Error: the type Person does not have null

Not	nullable	by	defaultNot	nullable	by	default

[<AllowNullLiteralAttribute>]
type Person(name: string, birthday: DateTime) =
 member this.Name = name
 member this.Birthday = birthday

let x : Person = null // OK

// more pain intended

Structural	equalityStructural	equality

type Person = {
 Name: string
 Birthday: DateTime
 }

let bday = DateTime(1980,1,1)
let alice1 = {Name="Alice"; Birthday=bday}
let alice2 = {Name="Alice"; Birthday=bday}

alice1 = alice2 // true or false?

// true.
// never write GetHashCode $ Equals ever again!

Everything	must	be	initializedEverything	must	be	initialized

type Person = {
 Name: string
 Birthday: DateTime
 }

let alice : Person // Error

Everything	must	be	initializedEverything	must	be	initialized

type Person = {
 Name: string
 Birthday: DateTime
 }

let alice = {Name="Alice"} // Error: Birthday is required

Everything	must	be	initializedEverything	must	be	initialized

type Person = {
 Name: string
 Birthday: DateTime
 }

let alice = {Name="Alice"; Birthday=DateTime(1980,1,1)} // OK

DIFFERENT	PHILOSOPHYDIFFERENT	PHILOSOPHY

Different	philosophyDifferent	philosophy

C#	historically	comes	from	C-like	approach

F#	come	from	ML,	a	MetaLanguage	for	proving
things

Goal:	Predictable	codeGoal:	Predictable	code

Can	you	understand	the	code	using	only	the
information	that	you	have	right	in	front	of	you?

You're	not	allowed	to	delve	into	other	parts	of	the
codebase.

Tricky	questionTricky	question

var x = 1;
DoSomething(x);

var y = "hello" + x; // What value is y?

// The answer is "hello world".

Tricky	questionTricky	question

function DoSomething (foo) { x = "world"; }

var x = 1;
DoSomething(x);

var y = "hello" + x;

// The code is actually JavaScript.

// Thanks to static typing, this can never happen in C#.

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type

// create two customers
var cust1 = new Customer(99, "J Smith");
var cust2 = new Customer(99, "J Smith");

cust1 == cust2; // true or false?

// You can't tell. Not predictable.

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.

// create a customer and an order
var cust = new Customer(99, "J Smith");
var order = new Order(99, "J Smith");

cust.Equals(order); // true or false?

// This is probably a bug.
// Why are you attempting to compare an order to a customer?

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.
Comparing	objects	of	different	types	is	a	compile-
time	error.

// create a customer
var cust = new Customer();

Console.WriteLine(cust.Address.Country) // what is the expected out

// You can't tell. Not predictable.
// What if Address is not always required?

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.
Comparing	objects	of	different	types	is	a	compile-
time	error.
Objects	must	always	be	initialized	to	a	valid	state.
Not	doing	so	is	a	compile-time	error.

// create a customer
var cust = new Customer(99, "J Smith");

// add it to a set
var processedCustomers = new HashSet<Customer>();
processedCustomers.Add(cust);

// process it
ProcessCustomer(cust);

processedCustomers.Contains(cust); // true or false?

// You can't tell. Not predictable.
// If ProcessCustomer mutates the customer, it might change the hash

// create a customer
var cust = new ImmutableCustomer(99, "J Smith");

// add it to a set
var processedCustomers = new HashSet<ImmutableCustomer>();
processedCustomers.Add(cust);

// process it and return the changes
var changedCustomer = ProcessCustomer(cust);

processedCustomers.Contains(cust); // true or false?

// true.
// Immutability forces changed values to be returned explicitly.
// Original value unchanged.

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.
Comparing	objects	of	different	types	is	a	compile-
time	error.
Objects	must	always	be	initialized	to	a	valid	state.
Not	doing	so	is	a	compile-time	error.
Once	created,	objects	and	collections	must	be
immutable.

// create a repository
var repo = new CustomerRepository();

// find a customer by id
var customer = repo.GetById(42);

Console.WriteLine(customer.Id); // what is the expected output?

// You can't tell. Not predictable.
// What happens if the customer is missing?
// Is the customer null or what?

// create a repository
var repo = new CustomerRepository();

// find a customer by id
var customerOrError = repo.GetById(42);

// handle both cases
if (customerOrError.IsCustomer)
 Console.WriteLine(customerOrError.Customer.Id);

if (customerOrError.IsError)
 Console.WriteLine(customerOrError.ErrorMessage);

// Instead, build error cases into the return type.

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.
Comparing	objects	of	different	types	is	a	compile-
time	error.
Objects	must	always	be	initialized	to	a	valid	state.
Not	doing	so	is	a	compile-time	error.
Once	created,	objects	and	collections	must	be
immutable.
Missing	data	or	errors	must	be	made	explicit.	No
nulls	allowed.

Predictable	languagePredictable	language

Variables	should	not	be	allowed	to	change	their
type
Objects	with	the	same	values	should	be	equal	by
default.
Comparing	objects	of	different	types	is	a	compile-
time	error.
Objects	must	always	be	initialized	to	a	valid	state.
Not	doing	so	is	a	compile-time	error.
Once	created,	objects	and	collections	are	generally
immutable.
Missing	data	or	errors	are	generally	made	explicit.
Nulls	are	a	code	smell.

Predictable	languagePredictable	language
F#	is	not	perfect.	But	conventions	lead	this	way.F#	is	not	perfect.	But	conventions	lead	this	way.

FUNCTIONAL	FIRSTFUNCTIONAL	FIRST

Core	principles	of	functional	programmingCore	principles	of	functional	programming

Functions

Composition

Parameterization

PrinciplePrinciple
Functions	are	thingsFunctions	are	things

Functions	are	standalone	things

Hence,	they	are	not	attached	to	a	class

Functions	can	be	used	for	inputs	and	outputs	of
other	functions

From	this	simple	foundation	we	can	build	complex
things

PrinciplePrinciple
Functions	can	be	composed	togetherFunctions	can	be	composed	together

Composition	in	F#Composition	in	F#

let add1 x = x + 1
let double x = x + x

let add1_double =
 add1 >> double

let x = add1_double 5 // Outputs 12

Composition	in	F#Composition	in	F#

let add1_double_square =
 add1 >> double >> square

let x = add1_double_square 5 // Outputs 144

Composition	in	C#Composition	in	C#

Func<int, int> add1 = x => x + 1;
Func<int, int> doubl = x => x + x;
Func<int, int> square = x => x * x;

var composed =
 add1.Compose(doubl).Compose(square);

composed(5);

Nesting	functionsNesting	functions

add1 5 // = 6
double (add1 5) // = 12
square (double (add1 5)) // = 144

// Standard way of nesting function calls can be confusing if too de

Piping	in	F#	(Piping	in	F#	(|>|>))

5 |> add1 // = 6
5 |> add1 |> double // = 12
5 |> add1 |> double |> square // = 144

// Pipe operator pipes a value through a set of functions
// in sequence and returns the resulting value

Piping	in	C#	(if	we	really	wanted	to)Piping	in	C#	(if	we	really	wanted	to)

Func<int, int> Add1 = x => x + 1;
Func<int, int> Double = x => x + x;
Func<int, int> Square = x => x * x;

5.Pipe(Add1); // = 6
5.Pipe(Add1).Pipe(Double); // = 12
5.Pipe(Add1).Pipe(Double).Pipe(Square); // = 144

// Pipe() is a helper method we have to write ourselves

Why	we	say	F#	is	"functional	first"Why	we	say	F#	is	"functional	first"

F#	makes	functional	programming	easy

C#	makes	FP	possible
but	it's	awkward	and	not	idiomatic

PrinciplePrinciple
ParameterizationParameterization

let printList() =
 for i in [1..10] do
 printfn "the number is %i"

// [1..10] is hard-coded data. Yuck!

let printList aList =
 for i in aList do
 printfn "the number is %i" i

// It's second nature to parameterize the data input
// However...

let printList aList =
 for i in aList do
 printfn "the number is %i" i

// Hard-coded behaviour. Yuck!
// FPers would parameterize the action as well.

let printList anAction aList =
 for i in aList do
 anAction i

// We've decoupled the behavior from the data.
// Any list, any action!

// F# helps by making this trivial to do.

public static int Product(int n)
{
 int product = 1;
 for (int i = 1; i <= n; i++)
 {
 product *= i;
 }
 return product;
}

public static int Sum(int n)
{
 int sum = 0;
 for (int i = 1; i <= n; i++)
 {
 sum += i;
 }
 return sum;
}

// Don't Repeat Yourself (DRY)?

public static int Product(int n)
{
 int product = 1; // Initial value
 for (int i = 1; i <= n; i++) // Common code
 {
 product *= i; // Action
 }
 return product; // Common code
}

public static int Sum(int n)
{
 int sum = 0; // Initial value
 for (int i = 1; i <= n; i++) // Common code
 {
 sum += i; // Action
 }
 return sum; // Common code
}

// Don't Repeat Yourself (DRY)?

let fold action initialValue list =
 let mutable totalSoFar = initialValue
 for item in list do
 totalSoFar <- action totalSoFar item
 totalSoFar

// Initial value dealt with;
// Common code extracted;
// Parameterized action;

let product n =
 let initialValue = 1
 let action productSoFar x = productSoFar * x
 [1..n] |> List.fold action initialValue

let sum n =
 let initialValue = 0
 let action sumSoFar x = sumSoFar + x
 [1..n] |> List.fold action initialValue

// Lots of collections functions like this:
// "fold", "map", "reduce", "collect", etc.

PrinciplePrinciple
Algebraic	type	systemAlgebraic	type	system

F#	types	can	be	composedF#	types	can	be	composed

New	types	are	build	from	smaller	types	using:
AND
OR

Types	are	executable	documentation

type FruitSalad = {
 Apple: AppleVariety
 Banana: BananaVariety
 Cherry: CherryVariety
 }

// FruidSalad = One each of Apple and Banana and Cherry
// Example: pairs, tuples, records (not yet available in C#)

type Snack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherry of CherryVariety

// Snack = Apple or Banana or Cherry
// Not available in C#

We	accept	three	forms	of	payment:	Check,We	accept	three	forms	of	payment:	Check,
Cash,	Card.Cash,	Card.

For	Cash	we	don't	need	any	extra	information
For	Checks	we	need	a	check	number
For	Cards	we	need	a	card	type	and	card	number

How	would	you	implement	this?

// Possible C# implementation

interface IPaymentMethod
{..}

class Cash() : IPaymentMethod
{..}

class Check(int checkNo): IPaymentMethod
{..}

class Card(string cardType, string cardNo) : IPaymentMethod
{..}

// Possible F# implementation

type CheckNumber = int // primitive type
type CardNumber = string // primitive type

type CardType = Visa | Mastercard // OR type
type CreditCardInfo = CardType * CardNumber // AND type

type PaymentMethod = // OR type
 | Cash
 | Check of CheckNumber // can you guess which p
 | Card of CreditCardInfo // methods are accepted?

type PaymentAmount = decimal // primitive type
type Currency = EUR | USD // OR type

type Payment = { // final type built from
 Amount : PaymentAmount
 Currency: Currency
 Method: PaymentMethod
 }

let payment = { // usage example
 Amount = PaymentAmount 100.0;
 Currency = EUR;
 Method = Check 9912345
 }

type CheckNumber = int
type CardNumber = string

type CardType = Visa | Mastercard
type CreditCardInfo = CardType * CardNumber

type PaymentMethod =
 | Cash
 | Check of CheckNumber
 | Card of CreditCardInfo

type PaymentAmount = decimal
type Currency = EUR | USD

type Payment = {
 Amount : PaymentAmount
 Currency: Currency
 Method: PaymentMethod
 }

// F# types are executable documentation

PrinciplePrinciple
Interactivity	demo	(if	time	allows)Interactivity	demo	(if	time	allows)

Suggested	readingSuggested	reading

Getting	started	with	F#Getting	started	with	F#
Start	hereStart	here

O�cial	F#	Guide:	

F#	Foundation:	
F#	for	fun	and	pro�t:

https://docs.microsoft.com/en-
us/dotnet/fsharp/

https://fsharp.org/

https://fsharpforfunandpro�t.com

https://docs.microsoft.com/en-us/dotnet/fsharp/
https://fsharp.org/
https://fsharpforfunandprofit.com/

THANK	YOUTHANK	YOU

Nicola	Iarocci

Software	Craftsman,	MVP
	|	nicolaiarocci.com @nicolaiarocci

https://nicolaiarocci.com/
https://twitter.com/nicolaiarocci

