Introducing F

Nicola larocci
@nicolaiarocci
Software Craftsman, MVP

=
v
>
©
(a]
>
=
c
S
€
€
o
v’

INTRODUCTION TO F#
AND FUNC TONAL PROGRAMMING
~OR [He C# DEVELOPER

Nicola larocci

Software Craftsman, MVP
nicolaiarocci.com | @nicolaiarocci

https://nicolaiarocci.com/
https://twitter.com/nicolaiarocci

DISCLAIMER

This talk is based on the excellent work by

Scott Wlaschin
fsharptorfunandprofit.com | @ScottWlaschin

https://fsharpforfunandprofit.com/
https://twitter.com/ScottWlaschin

[HE GOAL OF THIS TALK
s just to demistity F# a bit

You cant become an expert in an hour

"Il try not to be too biased

s it worth the effort learning a new language?

A language that doesn't affect the way you think about
programming, 1s not worth knowing - Alan Perlis

e You dont really want to invest your time into
learning new, marginally important things

e F#is alanguage that will change the way you think
about programming

e Don't trust people who have never looked at it.
Don't bother.

https://en.wikipedia.org/wiki/Alan_Perlis

ABOU | —#

e Developed by Microsoft Research
» Shipped with Visual Studio 2010
= History of F# @ https://fsharp.org/history/

e Open Source @ https://github.com/dotnet/fsharp

e Cross platform (Linux, macOS, Windows)
= \Works with VS Code and other editors

e Very active and friendly community
= Start with fsharp.org

= F# Slack channel
» #ifsharp on Twitter

https://fsharp.org/history/
https://github.com/dotnet/fsharp
https://fsharp.org/

DIFFERENCES

-rom least to most

e Concise syntax
e Type inference

e Different defaults

Se W

Importa

e Different philosophy

N C# AND H#

Nt

UNIQUE TO F#

e Functional first

e Algebraic type system

e [nteractivity

SYNTAX

Immutable C# class we'll use as an example

public class Person

{
public Person(string name, DateTime birthday)
{
_name = name;
_birthday = birthday;
}

private readonly string name;
private readonly DateTime birthday;

public string Name

{
get { return name; }
}
public DateTime Birthday
{
get { return birthday; }
}

Indentation instead of curly braces

Do we really need the curly braces?

public class Person

{
public Person(string name, DateTime birthday)
{
_name = name;
_birthday = birthday;
}

private readonly string name;
private readonly DateTime birthday;

public string Name

{
get { return name; }
}
public DateTime Birthday
{
get { return birthday; }
}

Indentation gives us all the clues we need

public class Person =
public Person(string name, DateTime birthday) =

_name = name;
_birthday = birthday;

private readonly string name;
private readonly DateTime birthday;

public string Name =
get { return name; }
public DateTime Birthday =

get { return birthday; }

Use '='to start blocks

public class Person =
public Person(string name, DateTime birthday) =

_name = name;
_birthday = birthday;

private readonly string name;
private readonly DateTime birthday;

public string Name =
get { return name; }
public DateTime Birthday =

get { return birthday; }

Shift up to use less vertical space

public class Person =

public Person(string name, DateTime birthday) =
_name = name;
_birthday = birthday;

private readonly string name;
private readonly DateTime birthday;

public string Name =
get { return name; }

public DateTime Birthday =
get { return _birthday; }

Helpful Venn Diagram

People who People who
complain about have spent time
using a language using a language

with syntactic with syntactic
whitespace \ whitespace

Overlap

Pythons use of whitespace stopped feeling unnatural after
about twenty minutes. | just indented code, pretty much
as | would have done in a C program anyway, and it
worked - Eric S. Raymond

https://en.wikipedia.org/wiki/Eric_S._Raymond

Automatically create backing fields from
constructor parameters

A lot of duplication...

public class Person =

// constructor arguments match the private fields
public Person(string name, DateTime birthday) =
// arguments values are assigned to backing fields
_name = name;
_birthday = birthday;

// private fields declared

private readonly string name;
private readonly DateTime birthday;

public string Name =
// field value finally returned

get { return name; }

public DateTime Birthday =
// field value finally returned

get { return birthday; }

Use the constructor params directly

public class Person =
public Person(string name, DateTime birthday) =
public string Name =
get { return name; }

public DateTime Birthday =
get { return birthday; }

Merge the primary constructor with the class
definition

How often do you have more than one
constructor?

public class Person =

// enguiring minds want to know
public Person(string name, DateTime birthday) =

public string Name =
get { return name; }

public DateTime Birthday =
get { return birthday; }

Why not merge the constructor with the class
definition?

public class Person(string name, DateTime birthday) =

public string Name =
get { return name; }

public DateTime Birthday =
get { return birthday; }

Reduced syntax noise

Class is immutable, every property is ‘get only

public class Person(string name, DateTime birthday) =

public string Name =
get { return name; }

public DateTime Birthday =
get { return birthday; }

get'is gonel!

public class Person(string name, DateTime birthday) =

public string Name =
return name;

public DateTime Birthday =
return birthday;

Who even likes typing semicolons anyway?

public class Person(string name, DateTime birthday) =

public string Name =
return name;

public DateTime Birthday =
return birthday;

Semicolons gone!

public class Person(string name, DateTime birthday) =

public string Name =
return name

public DateTime Birthday =
return birthday

Implicit return

F4# is an expression-oriented language

public class Person(string name, DateTime birthday) =

public string Name =
return name

public DateTime Birthday =
return birthday

The return is implict for the last line in a block

public class Person(string name, DateTime birthday) =

public string Name =
name

public DateTime Birthday =
birthday

Members are public by default

The properties are immutable

public class Person(string name, DateTime birthday) =

public string Name =
return name

public DateTime Birthday =
return birthday

No explicit ‘public’ is needed

class Person(string name, DateTime birthday) =

string Name =
return name

DateTime Birthday =
return birthday

Type Inference

We have to repeat the type? Can't the compiler
figure it out?

class Person(string name, DateTime birthday) =

// it's a string, we know from the constructor
string Name =
name

// and this one, it ought to be a DateTime
DateTime Birthday =
birthday

The answer is a big YES!

class Person(string name, DateTime birthday) =

Name =
name

Birthday =
birthday

Class and method members

the ‘'member keyword indicates class members

class Person(string name, DateTime birthday) =

member this.Name =
name

member this.Birthday =
birthday

'member also defines methods

class Person(string name, DateTime birthday) =

member this.Name =
name

member this.Birthday =
birthday

member this.Age() =
var daysDiff = DateTime.Today.Subtract(birthday).Days
daysDiff / 365

Type annotations

In C#, types come before name

// all C-derivative languages use type-then-name syntax
class Person(string name, DateTime birthday) =

member this.Name =
name

member this.Birthday =
birthday

member this.Age() =
var daysDiff = DateTime.Today.Subtract(birthday) .Days
daysDiff / 365

In F#, types come after name

// most modern languages adopt type-then-name instead
class Person(name: string, birthday: DateTime) =

member this.Name =
name

member this.Birthday =
birthday

member this.Age() =
var daysDiff = DateTime.Today.Subtract(birthday) .Days
daysDiff / 365

Different keywords

In C#, we use ‘class' and 'var

identifies - you guessed it - a class

// 'class'
string, birthday: DateTime) =

class Person(name:
member this.Name =
name
member this.Birthday =
birthday

member this.Age() =
// 'var' is C#'s type-inference declaration

var daysDiff = DateTime.Today.Subtract(birthday).Days

daysDiff / 365

In F#, we use type and let

// 'type' identifies - you guessed it again! - F# types
type Person(name: string, birthday: DateTime) =

member this.Name =
name

member this.Birthday =
birthday

member this.Age() =
// 'let' is how you declare stuff in F#'s
let daysDiff = DateTime.Today.Subtract(birthday).Days
daysDiff / 365

Modern C# equivalent with auto-properties and
expression-bodied members

class Person(string name, DateTime birthday)

{

public string Name { get; } = name;

public DateTime Birthday { get; } = birthday;

public int Age() => DateTime.Today.Subtract(birthday).Days / 36
}

// Actually, this does not work. Primary constructors was
// a short-lived feature that only existed in VS2014

e surprising similar
e NOt a coincidence

Functional approach: separate the data from
the functions

type Person = {
Name: string
Birthday: DateTime

}

let age person =

let daysDiff = DateTime.Today.Subtract(person.Birthday).Days
daysDiff / 365

// age : Person -> int
// (the inferred type of the function)

Observation
Syntax is never the most important thing about

a programming language. But...

271 lines of code has shrunk to 5 lines of code

You write 1/3 as much code

You see 5x more
code on yowr
screen!

TYP

S\is

—NC

let doSomething f x =
let vy = (x + 1)
"hello" + vy

// two parameters: f & X

let doSomething f x =
let vy = £ (x + 1) // x must be an int
"hello" + vy

let doSomething f x =
let vy = (x + 1)
"hello" + vy // y must be a string

let doSomething f x =
let y = £ (x + 1) // £ must be a int -> string function
"hello" + vy

Inferred type of doSomething

f:(int -> string) -> x:int -> string

// 'f' is a function, it takes an int and returns a string;
// 'x' 1s an int;
// return value is a string

A more complex example

// C# code

public IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>
IEnumerable<TSource> source,

Func<TSource, TKey> keySelector

)

// F# code
let GroupBy source keySelector =

Benefits of type inference

- less typing
- less noise
- more logic

DIFF

=N D

—FAULTS

F# has different defaults

o Immutable by default
= mutable is a special case

e Non-null types/classes by default
» nullable is a special case

e Structural equality by default
= reference equality is a special case

e Everything must be initialized
» explicit is better than implicit - Zen of Python

Immutability by default

let x =1

X <- 2 // Error: this value is not mutable

Immutability by default

let mutable x =1

X <= 2 // OK

Not nullable by default

type Person = {
Name: string
Birthday: DateTime

}

let x : Person = null // Error: the type Person does not have nul

Not nullable by default

[<AllowNullLiteralAttribute>]

type Person(name: string, birthday: DateTime) =
member this.Name = name
member this.Birthday = birthday

let X : Person = null // OK

// more pain intended

Structural equality

type Person = {
Name: string
Birthday: DateTime

}

let bday = DateTime(1980,1,1)
let alicel = {Name="Alice"; Birthday=bday}
let alice2 = {Name="Alice"; Birthday=bday}

alicel = alice2 // true or false?

// true.
// never write GetHashCode $ Equals ever again!

Everything must be initialized

type Person = {
Name: string
Birthday: DateTime

}

let alice : Person // Error

Everything must be initialized

type Person = {
Name: string
Birthday: DateTime

}

let alice = {Name="Alice"} // Error: Birthday is required

Everything must be initialized

type Person = {
Name: string
Birthday: DateTime

}

let alice = {Name="Alice"; Birthday=DateTime(1980,1,1)} // OK

DIFFERENT PHILOSOPHY

Different philosophy

o C# historically comes from C-like approach

e F# come from ML, a MetalLanguage for proving
things

GGoal: Predictable code

e Can you understand the code using only the
iInformation that you have right in front of you?

e You're not allowed to delve into other parts of the
codebase.

Tricky question

var x = 1;
DoSomething(x);

var y = "hello" + x; // What value is y?

// The answer is "hello world".

Tricky question

function DoSomething (foo) { x = "world"; }

var x = 1;
DoSomething(x);

var y = "hello" + x;

// The code is actually JavaScript.

// Thanks to static typing, this can never happen in C#.

Predictable language

e Variables should not be allowed to change their
type

// create two customers
var custl = new Customer (99, "J Smith");
var cust2 = new Customer (99, "J Smith");

custl == cust2; // true or false?

// You can't tell. Not predictable.

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

// create a customer and an order

var cust = new Customer (99, "J Smith");
var order = new Order (99, "J Smith");

cust.Equals(order); // true or false?

// This is probably a bug.
// Why are you attempting to compare an order to a customer?

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

e COomparing objects of different types is a compile-
time error,

// create a customer
var cust = new Customer();

Console.WriteLine(cust.Address.Country) // what is the expected ou

// You can't tell. Not predictable.
// What if Address is not always required?

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

e Comparing objects of different types is a compile-
time error.

e Objects must always be initialized to a valid state.
Not doing so Is a compile-time error,

// create a customer
var cust = new Customer (99, "J Smith");

// add it to a set
var processedCustomers = new HashSet<Customer>();

processedCustomers.Add(cust);

// process it
ProcessCustomer (cust);

processedCustomers.Contains(cust); // true or false?

// You can't tell. Not predictable.
// If ProcessCustomer mutates the customer, it might change the has

// create a customer
var cust = new ImmutableCustomer (99, "J Smith");

// add it to a set
var processedCustomers = new HashSet<ImmutableCustomer>();
processedCustomers.Add(cust);

// process it and return the changes
var changedCustomer = ProcessCustomer(cust);

processedCustomers.Contains(cust); // true or false?

// true.
// Immutability forces changed values to be returned explicitly.
// Original value unchanged.

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

e Comparing objects of different types is a compile-
time error.

e Objects must always be initialized to a valid state.
Not doing so is a compile-time error.

e Once created, objects and collections must be
immutable.

// create a repository
var repo = new CustomerRepository();

// find a customer by id
var customer = repo.GetById(42);

Console.WriteLine(customer.Id); // what is the expected output?

// You can't tell. Not predictable.
// What happens if the customer is missing?
// Is the customer null or what?

// create a repository
var repo = new CustomerRepository();

// find a customer by id
var customerOrError = repo.GetById(42);

// handle both cases
if (customerOrError.IsCustomer)

Console.WriteLine(customerOrError.Customer.Id);

if (customerOrError.IsError)
Console.WritelLine(customerOrError.ErrorMessage);

// Instead, build error cases into the return type.

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

e Comparing objects of different types is a compile-
time error.

e Objects must always be initialized to a valid state.
Not doing so is a compile-time error.

e Once created, objects and collections must be
immutable.

e Missing data or errors must be made explicit. No
nulls allowed.

Predictable language

e Variables should not be allowed to change their
type

e Objects with the same values should be equal by
default.

e Comparing objects of different types is a compile-
time error.

e Objects must always be initialized to a valid state.
Not doing so is a compile-time error.

e Once created, objects and collections are generally
immutable.

e Missing data or errors are generally made explicit.
Nulls are g code smell.

—H# IS

Predictable language

not perfect. But conventions lead this way.

—UNCTIONAL FIRST

Core principles of functional programming

e FUNCTIONS
e COMposition

e Parameterization

Principle
-unctions are things

e Functions are standalone things

e Hence, they are not attached to a class

Function

m o m \

A function is a thing which
transtorms inputs 10 ontpwis

let x = 1 &“
x
let add xy = x + Yy ﬂ ﬁ

T N
"add”

Yame keyword
(not a coincidence!

i ol

A function can be an owtpwt

o [\ ﬂ ﬁ output |

A function can be an input

o H i s A function can be a parameter

i (oo

e Functions can be used for inputs and outputs of
other functions

e From this simple foundation we can build complex
things

Principle
-unctions can be composed together

Function 1 Function 2

i‘ § :_ apple -> banana \) \) banana -> cherry

Function 2

Function 1 \
) \) banana -> cherry

apple -> banana

>>

Composition

New Function
apple -> cherry m

Can't tell it was buwilt from
smaller functions!

(“ New function
New Function -
apple -> cherry E é

Can't 4ell it was buwilt from
smaller functions!

Where did the banana q0?
(abstraction)

Composition in F#

let addl x =
let double x

I

+ 1

X + X

let addl double =
addl >> double

let x = addl double 5

// Outputs 12

“asat | ouble

12

Composition in F#

let addl double square =
addl >> double >> square

let x = addl double square 5 // Outputs 144

s —>[waal [dowle | smare

| 44

Composition in C#

Func<int, int> addl = x => x + 1;
Func<int, int> doubl = x => x + X;
Func<int, int> square = x => x * Xx;

var composed =
addl.Compose(doubl) .Compose (square) ;

composed(5);

Nesting functions

addl 5 // = 6
double (addl 5) // = 12
square (double (addl 5)) // 144

// Standard way of nesting function calls can be confusing if too d

Piping in F# (]>)

5 |> add1l

5 |[> addl |> double

5 |[> addl |> double |> square //

// = 6
// = 12

144

// Pipe operator pipes a value through a set of functions
// in sequence and returns the resulting value

5 =

add|

—> ¢ >

double

—> |2 =P

square [~ 144

T This is easier 40 wnderstand

Piping in C# (if we really wanted to)

Func<int, int> Addl = x => x + 1;

Func<int, int> Double = x => x + X;

Func<int, int> Square = x => x * Xx;
5.Pipe(Addl); // = 6
5.Pipe(Addl) .Pipe(Double); // = 12

5.Pipe(Addl) .Pipe(Double) .Pipe(Square); // = 144

// Pipe() is a helper method we have to write ourselves

Why we say F# is "functional first’

e F# makes functional programming easy

o C# makes FP possible
» but it's awkward and not idiomatic

Principle
Parameterization

let printList() =
for i in [1..10] do
printfn "the number is %i"

// [1..10] is hard-coded data. Yuck!

let printList aList =
for i in alList do
printfn "the number is %i" 1i

// It's second nature to parameterize the data input
// However...

let printList aList =
for i in alList do
printfn "the number is %i" 1i

// Hard-coded behaviour. Yuck!
// FPers would parameterize the action as well.

let printList anAction aList =
for i in alList do
anAction i

// We've decoupled the behavior from the data.
// Any list, any action!

// F# helps by making this trivial to do.

public static int Product(int n)

{

int product = 1;
7

for (int i = 1; i <= n; 1i++)
{

product *= 1i;
}

return product;

}

public static int Sum(int n)

{
int sum = 0;
for (int i =

{

1; 1 <= n; it++)

sum += 1i;

}

return sum;

}

// Don't Repeat Yourself (DRY)?

public static int Product(int n)

{
int product = 1;
for (int i = 1;

{

1 <= n; 1i++)
product *= 1i;

}

return product;

}

public static int Sum(int n)

{
int sum = 0;
for (int i =

{

l; i <= n;

sum += 1i;

}

return sum;

}

// Don't Repeat Yourself (DRY)?

//
//

//

//

//
//

//

//

Initial value
Common code

Action

Common code

Initial value
Common code

Action

Common code

let fold action initialValue list =
let mutable totalSoFar = initialValue
for item in 1list do
totalSoFar <- action totalSoFar item
totalSoFar

// Initial value dealt with;
// Common code extracted;
// Parameterized action;

let product n =
let initialvValue = 1
let action productSoFar x = productSoFar
[l..n] |> List.fold action initialValue

let sum n
let initialvValue = 0
let action sumSoFar x = sumSoFar + X
[l..n] |> List.fold action initialValue

// Lots of collections functions like this:
// "fold", "map", "reduce", "collect", etc.

Principle
Algebraic type system

F# types can be composed

e New types are build from smaller types using:
= AND
= OR

 Types are executable documentation

type FruitSalad = {
Apple: AppleVariety
Banana: BananaVariety
Cherry: CherryVariety

}

// FruidSalad = One each of Apple and Banana and Cherry
// Example: pairs, tuples, records (not yet available in C#)

type Snack =
| Apple of AppleVariety
| Banana of BananaVariety
| Cherry of CherryVariety

// Snack = Apple or Banana or Cherry
// Not available in C#

We accept three forms of payment: Check,
Cash, Card.

e For Cash we don't need any extra information
e For Checks we need a check number

e For Cards we need a card type and card number

How would you implement this?

// Possible C# implementation

interface IPaymentMethod

{--}

class Cash() : IPaymentMethod

{--}

class Check(int checkNo): IPaymentMethod

{--}

class Card(string cardType, string cardNo) : IPaymentMethod

{..}

// Possible F# implementation

type
type

type
type

type

CheckNumber = int
CardNumber = string

CardType = Visa | Mastercard
CreditCardInfo = CardType * CardNumber

PaymentMethod =

| Cash

| Check of CheckNumber

| Card of CreditCardInfo

//
//

//
//

//

//
//

primitive type
primitive type

OR type
AND type

OR type

can you guess which -
methods are accepted

type PaymentAmount = decimal
type Currency = EUR | USD

type Payment = {
Amount : PaymentAmount
Currency: Currency
Method: PaymentMethod

}

let payment = {

Amount = PaymentAmount 100.0;

Currency = EUR;

Method = Check 9912345

// primitive type
// OR type

// final type built fro;

// usage example

type CheckNumber = int
type CardNumber = string

type CardType = Visa | Mastercard
type CreditCardInfo = CardType * CardNumber

type PaymentMethod =
| Cash
| Check of CheckNumber
| Card of CreditCardInfo

type PaymentAmount = decimal
type Currency = EUR | USD

type Payment = {
Amount : PaymentAmount
Currency: Currency
Method: PaymentMethod

}

// F# types are executable documentation

Principle
nteractivity demo (if time allows)

Suggested reading

Domain Modeling
Real-World v Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

A quide for NET developers

With examples in F# and (¢

Wik

Foarwin af

Isaac Abraham
i Scott Wlaschin
MW vannine edited by Brian MacDonald
I

f“ HANNING Heaterial

Getting started with F#
Start here

o Official F# Guide: https://docs.microsoft.com/en-
us/dotnet/fsharp/

e F# Foundation: https://fsharp.org/

e F# for fun and profit:

nttps://fsharpforfunandprofit.com

https://docs.microsoft.com/en-us/dotnet/fsharp/
https://fsharp.org/
https://fsharpforfunandprofit.com/

THANK YOU

Nicola larocci

Software Craftsman, MVP
nicolaiarocci.com | @nicolaiarocci

https://nicolaiarocci.com/
https://twitter.com/nicolaiarocci

