
19 LUGLIO

2016

Un «actor» model per amico

Alessandro Melchiori

Give it a try...

concurrency + shared state = easy

Shared state and concurrency

• Synchronizing shared state

• Coordinating work among threads

• Use synchronization mechanisms

• Debugging..WTF?

• ...

WRITING THREAD-SAFE CODE
IS HARD

TheSpeaker.AboutMe();

• Alessandro Melchiori

• Partner @ CodicePlastico srl

• Software Architect @ Particular Software

• @amelchiori

• alessandro.melchiori@particular.net

• http://melkio.codiceplastico.com

• http://github.com/melkio

TheTalk.About();

• Actor model: introduzione

• Akka.Net

• Azure Service Fabric: Reliable Actors

Actor model

The actor model in computer science is a mathematical model of
concurrent computation that treats "actors" as the universal primitives
of concurrent computation: in response to a message that it receives,
an actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message
received

https://en.wikipedia.org/wiki/Actor_model

Actor model

The actor model in computer science is a mathematical model of
concurrent computation that treats "actors" as the universal primitives
of concurrent computation: in response to a message that it receives,
an actor can make local decisions, create more actors, send more
messages, and determine how to respond to the next message
received

https://en.wikipedia.org/wiki/Actor_model

Alan Key and OOP

«... I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages (so
messaging came at the very beginning -- it took a while to see how to
do messaging in a programming language efficiently enough to be
useful).»

«... OOP to me means only messaging, local retention and protection
and hiding of state-process, and extreme late-binding of all things.»

http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

Alan Key and OOP

«... I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages (so
messaging came at the very beginning -- it took a while to see how to
do messaging in a programming language efficiently enough to be
useful).»

«... OOP to me means only messaging, local retention and protection
and hiding of state-process, and extreme late-binding of all things.»

http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en

Actor Model

Actor Model

• The only way to interact with an actor is to send it a message

• Messages should be immutable

• All computation is in response to a message

• An actor is «potential energy». A message turns it into «kinetic
energy»

Implementations

• Erlang

• Akka (Scala / Java)

• Orleans

• Akka.Net (why not NAkka?)

• Reliable Actors (Azure Service Fabric)

Implementations

• Erlang

• Akka (Scala / Java)

• Orleans

• Akka.Net

• Reliable Actors (Azure Service Fabric)

Akka.Net

Akka

Akka.DI

Akka.Logger

Akka.Remote

Akka.Cluster

Akka.Persistence

1 - demo
Intro to Akka.Net

Akka.Net

/

/user /system

/actor1

/child1 /child2 /child3

• Hierarchy

• ActorSelection

• Supervisor Strategy

2 - demo
ActorSelection, ActorPath and SupervisorStrategy

Reliable Actors
Azure Service Fabric

Reliable Actors

• Virtual Actor Model: actor’s lifetime is not tied to their in-memory
representation

• Each Reliable Actor service is a partitioned, stateful Reliable Service

• To provide scalability and reliability, Service Fabric distributes actors
throughout the cluster and automatically migrates them from failed
nodes to healthy ones as required

Reliable Actors

3 - demo
Intro to Reliable Actors

Thank you! Questions?
https://twitter.com/ugidotnet

https://twitter.com/ugidotnet

