
C# 12
Cosa c’è di nuovo e interessante

Nicola Iarocci
Microsoft MVP
info@nicolaiarocci.com | @nicolaiarocci

What’s new in C# 12

• Primary constructors

• Collection expressions

• Alias any type

• Default lambda parameters

• ref readonly parameters

• Inline arrays

• Experimental attribute

• Interceptors (“Preview”)

Primary constructors
You can now create primary constructors in any class and struct.

Primary constructors are no longer restricted to record types.

Demo

Primary constructors

Primary constructors

• You can now add parameters to a struct or class declaration

• Parameters are in scope throughout the class definition

• Parameters are not stored if they aren't needed

• When needed the compiler creates hidden fields to represent each parameter

• Parameters aren't members of the class (`this.parameter` won’t work)

• Parameters don't become properties, except in record types (we can create properties)

• Secondary or parameterless constructors must invoke the primary constructor

• Validation can be added when assigning the corresponding properties

• Derived type can have a PC (it must invoke the base class primary constructor)

• Derived type can avoid a PC (a regular constructor must invoke the base primary)

• In derived types, watch out for ‘nested captures’ of primary parameters values

• VS and VSCode offer built-in support for primary constructors (refactorings, etc.)

• Trivia: the original implementation goes back to C# 6 (2015)

Collection expressions
Collection expressions introduce a new terse syntax to create common

collection values

Demo

Collection expressions

Collection expressions

• Collection expressions offer a terse, unified syntax

• In most cases, they also offer superior performance

• Support a large number of collection types and variants

• They avoid refactoring when the underlying type changes

• Accept both constant and variable values

• Support inclusion of other collections via spread operator

• Can be supported even in custom types (library authors!)

• Syntax symmetricity with pattern matching and/or slicing

• VS and VS Code offer full collection expressions support

• Trivia: Dictionary expressions? Maybe in the future

Alias any type
You can use the using alias directive to alias
any type, not just named types.

Default lambda
parameters
Beginning with C# 12, you can provide
default values for parameters on lambda
expressions.

ref readonly
The addition of ref readonly parameters
provides the final combination of passing
parameters by reference or by value.

Assume you have a fairly large struct that
you absolutely don't want to copy around:
`def readonly` triggers a warning on the
caller side unless he/she uses ‘ref’ or ‘in’.

Mostly used by the runtime team and library
authors. Performance and clarity, again.

Inline arrays
Inline arrays enable a developer to create an
array of fixed size in a struct type.

They are used mainly by the runtime team
and other library authors for improved
performance with safety. Inline arrays
perform similar to unsafe fixed size buffers.

You likely won't declare your own inline
arrays, but you use them transparently when
they're exposed as `System.Span<T>` or
`System.ReadOnlySpan<T>` objects from
runtime APIs.

@nicolaiarocci
nicolaiarocci.com

Slide e materiale su
https://www.dotnetconference.it/

	Diapositiva 1: C# 12 Cosa c’è di nuovo e interessante
	Diapositiva 4: What’s new in C# 12
	Diapositiva 5: Primary constructors
	Diapositiva 6: Primary constructors
	Diapositiva 7: Primary constructors
	Diapositiva 8: Collection expressions
	Diapositiva 9: Collection expressions
	Diapositiva 10: Collection expressions
	Diapositiva 11: Alias any type
	Diapositiva 12: Default lambda parameters
	Diapositiva 13: ref readonly
	Diapositiva 14: Inline arrays
	Diapositiva 15: @nicolaiarocci nicolaiarocci.com

