UGIdotNET

.NET Conference
Italia 2023

NET

What's new in C# 12

* Primary constructors

* Collection expressions

* Alias any type

 Default lambda parameters
e ref readonly parameters

* Inline arrays

* Experimental attribute

* Interceptors ("Preview")

e30 aspitalia.com

Primary constructors

You can now create primary constructors in any class and struct.
Primary constructors are no longer restricted to record types.

20 aspitalia.com

.NET Conference
Italia 2023

NET

Primary constructors

* You can now add parameters to a struct or class declaration

» Parameters are in scope throughout the class definition

» Parameters are not stored if they aren't needed

* When needed the compiler creates hidden fields to represent each parameter

» Parameters aren't members of the class (‘this.parameter won't work)

» Parameters don't become properties, except in record types (we can create properties)
» Secondary or parameterless constructors must invoke the primary constructor

* Validation can be added when assigning the corresponding properties

* Derived type can have a PC (it must invoke the base class primary constructor)

* Derived type can avoid a PC (a regular constructor must invoke the base primary)
* In derived types, watch out for ‘nested captures’ of primary parameters values

* VS and VSCode offer built-in support for primary constructors (refactorings, etc.)
* Trivia: the original implementation goes back to C# 6 (2015)

e20 aspitalia.com

Collection expressions

Collection expressions introduce a new terse syntax to create common
collection values

20 aspitalia.com

.NET Conference
Italia 2023

NET

Collection expressions

* Collection expressions offer a terse, unified syntax

* In most cases, they also offer superior performance
 Support a large number of collection types and variants

* They avoid refactoring when the underlying type changes
» Accept both constant and variable values

 Support inclusion of other collections via spread operator
» Can be supported even in custom types (library authors!)
 Syntax symmetricity with pattern matching and/or slicing
VS and VS Code offer full collection expressions support

* Trivia: Dictionary expressions? Maybe in the future

e30 aspitalia.com

Alias any type

You can use the using alias directive to alias
any type, not just named types.

using Point = (int x, int y);

using Grade = decimal;

// Named properties are allowed

using Distanza = (double Magnitude, double Direction);

0 references
public class Experiments(Point point, Grade grade)

{
0 references
public Point Point { get; } = point;
0 references
public Grade Grade { get; } = grade;
// Explicit type properties also work
0 references
public (int x, int y) PointAsTuple { get; } = point;
0 references
public decimal GradeAsDecimal { get; } = grade;
0 references
void PrintDistanza()
{
var (magnitude, direction) = new Distanza(10, 100);
Console.WriteLine(magnitude);
Console.WritelLine(direction);
}
}

yaspitTalia.com

var IncrementBy = (int source, int increment = 1) => source + increment;

Default lambda
Console.WriteLine(IncrementBy(5)); // 6
para meters Console.WriteLine(IncrementBy(5, 2)); // 7

Beginning with C# 12, you can provide
default values for parameters on lambda

expressions.

oaspitalia.com

ref readonly

The addition of ref readonly parameters
provides the final combination of passing
parameters by reference or by value.

Assume you have a fairly large struct that
you absolutely don't want to copy around:
‘def readonly” triggers a warning on the
caller side unless he/she uses ‘ref” or ‘in’.

Mostly used by the runtime team and library
authors. Performance and clarity, again.

VU relerences

public static class RefReadOnlyDemo

{

}

// We absolutely don't want to create a copy of the input parameter.
1reference

public static unsafe int SumOverBigStruct(ref readonly BigStruct
{

// this fails:

// foo.Bar[42] = 0;

// TODO

return default;

}
0 references
public static void Caller()
{
BigStruct bigStruct = default;
int sum = SumOverBigStruct(bigStruct); // CS9192: Argument 1 should be passed With 'ref or 'in' keyword
}

2 references
public unsafe struct BigStruct

{

}

// alternatively imagine a lot of fields being in here
0 references

public fixed int Bar[32];

yaspitTalia.com

Inline arrays

Inline arrays enable a developer to create an
array of fixed size in a struct type.

They are used mainly by the runtime team
and other library authors for improved
performance with safety. Inline arrays
perform similar to unsafe fixed size buffers.

You likely won't declare your own inline
arrays, but you use them transparently when
they're exposed as "System.Span<T>" or
"System.ReadOnlySpan<T>" objects from
runtime APIs.

// An inline array is declared similar to the following struct:

[InlineArray(10)]

1 reference
public struct Buffer
{

0 references
private int _elemento;

// You use them like any other array:

0 references
public class InlineArrayDemo()

{

0 references
public void ArrayInspection()
{
var buffer = new Buffer();
for (int 1 = 0; i < 10; i++)
buffer[i] = i;

foreach (var i in buffer)
Console.WriteLine(i);

aspitalia.com

UGIdotNET

.NET Conference
Italia 2023

NET

	Diapositiva 1: C# 12 Cosa c’è di nuovo e interessante
	Diapositiva 4: What’s new in C# 12
	Diapositiva 5: Primary constructors
	Diapositiva 6: Primary constructors
	Diapositiva 7: Primary constructors
	Diapositiva 8: Collection expressions
	Diapositiva 9: Collection expressions
	Diapositiva 10: Collection expressions
	Diapositiva 11: Alias any type
	Diapositiva 12: Default lambda parameters
	Diapositiva 13: ref readonly
	Diapositiva 14: Inline arrays
	Diapositiva 15: @nicolaiarocci nicolaiarocci.com

