Agenti Autonomj
Azure Opem AI

Giancarlo Sudano 54
MICROSOFT

Agenti Autonomyco
Azure Opem Al

Giancarlo Sudano o B ”
MICROSOFT

Research
Breakthroughs

Microsoft Confidential

2016

2017

2018

2018

2019

2020

2021

2021

2022

2023

Object recognition Human parity

Speech recognition Human parity

Machine reading comprehension Human parity

Machine translation Human parity

Conversational QnA Human parity

Image captioning Human parity

Natural Language Understanding Human parity

Commonsense Question Answering Human parity

ChatGPT

GPT-4 and GPT-4 Vision

High Level Performance

GPT-4 test scores FE{S,etSi;Jr:;ted percentile
AP biology gsth—moth
O AI Uniform bar exam i%%{foo
G openal
SAT reading & writing ?,1903{200
SAT math Z%%{EOO

Source: OpenAl. (2023). GPT-4: Scaling up deep learning. Retrieved from https://openai.com/research/gpt-4.

Foundation models
are advancing exponentially

GPT-4

(?)

Megatron - Turing

400B
300B
GPT-3
200B (175B)
Megatron
L GPT-2 83B)
= (1.5B) Turing
(110M) (17.2B)
0
2018 2019 2020 2021 2022

Capabilities

Physics QA

Logical Inference Chain

Common Sense (Cause/Effect)

Pattern Recognition
Joke Explanation
Semantic Parsing

General Knowledge, Proverbs

Common Sense Reasoning
Code Completion, Translation
Summarization, Arithmetic
QA, Language understanding

Prompt Construction

Haii\ANCIelelo[alld[c]al > Prompt Instruction

Decoder Extract the name of this person in this text.
. e Text: "My name is Simon, order status?”
| Topic Classification
Completion
mmy Sentiment Analysis Entity (Name):

Prompt Instruction

8 Other NLU tasks Decide whether a phrase’s sentiment is positive,
P neutral, or negative.
o Phrase: “How can | help you today?”
Sentiment:
Paraphrase Prompt Instruction

Summarize the following conversation:
Call Center: How can | help you today?

Sentence Generation e
Customer: My name is Simon, order status?

Large Language Model

Other NLG tasks Completion
NURINERAICustomer calling regarding

l
=R e e

Technical Prompt Limits

Instructions

Task-specific context/knowledge

Examples (e.g., few-shots)

Previous user interactions (history) = = = — —»

Current user question/request

Limit input tokens (GPT4 128k)
Limit output tokens (GPT4 4k)
...and another subtle one...

You are an Al Assistant that helps answer geology questions

The following is useful context:

“In typical geological investigations, geologists use primary
information related to petrology (the study of rocks), stratigraphy
(the study of sedimentary layers), and structural geology (the study
of positions of rock units and their deformation). ”

The following are example questions and answers:
Q: What is stratigraphy?
A: the study of sedimentary layers

Please answer the following question:
Q: how is it different from structural geology?
A:

Research advancements on LLM capabilities

SELF-REFINE:
Iterative Refinement with Self-Feedback

Reflexion: Language Agents with
Verbal Reinforcement Learning

Aman Madaan', Niket Tandon”, Prakhar Guptal, Skyler Hallinan®, Luyu Gao',

Sarah Wiegreffe?, Uri Alon', Nouha Dziri®, Shrimai Prabhumoye*, Yiming Yang',

Shashank Gupta®, Bodhisattwa Prasad Majumder®, Katherine Hermann®,
Sean Welleck”*, Amir Yazdanbakhsh®, Peter Clark”
'Language Technologies Institute, Carmegie Mellon University
2 Allen Institute for Artificial Intelligence

SUniversity of Washington *“NVIDIA SUC San Diego *Google Research, Brain Team

amadaan@cs. cmu. edu, nikett@®allenai.org

Abstract

Like humans, large language models (LLMs) do not always generate the best
output on their first try. Motivated by how humans refine their written text, we
introduce SELF-REFINE, an approach for improving initial outputs from LLMs
through iterative feedback and refinement. The main idea is to generate an initial
output using an LLM; then, the same LLM provides feedback for its output and
uses it to refine itself, iteratively. SELF-REFINE does not require any supervised
training data, additional training, or reinforcement leaming, and instead uses a
single LLM as the generator, refiner and the feedback provider. We evaluate
SELF-REFINE across 7 diverse tasks, ranging from dialog response generation
to mathematical reasoning, using state-of-the-art (GPT-3.5 and GPT-4) LLMs.
Across all evaluated tasks, outputs generated with SELF-REFINE are preferred by
humans and automatic metrics over those generated with the same LLM using
conventional one-step generation, improving by ~20% absolute on average in task
performance. Our work demonstrates that even state-of-the-art LLMs like GPT-4
can be further improved at test-time using our simple, standalone approach.’.

Noah Shinn Federico Cassano
Northeastern University Northeastern University
noahshinn024@gmail. com cassano.f@northeastern.edu

Edward Berman Ashwin Gopinath

Northeastern University Massachusetts Institute of Technology
berman.ed@northeastern.edu agopi@mit.edu
Karthik Narasimhan Shunyu Yao
Princeton University Princeton University
karthikn@princeton.edn shunyuy@princeton.edu
Abstract

Large language models (LLMs) have been increasingly used to interact with exter-
nal environments (e.g., games, compilers, APIs) as goal-driven agents. However,
it remains challenging for these language agents to quickly and efficiently learn
from trial-and-error as traditional reinforcement learning methods require exten-
sive training samples and expensive model fine-tuning. We propose Reflexion, a
novel framework to reinforce language agents not by updating weights, but in-
stead through linguistic feedback. Concretely, Reflexion agents verbally reflect
on task feedback signals, then maintain their own reflective text in an episodic
memory buffer to induce better decision-making in subsequent trials. Reflexion is
flexible enough to incorporate various types (scalar values or free-form language)
and sources (external or internally simulated) of feedback signals, and obtains
significant improvements over a baseline agent across diverse tasks (sequential
decision-making, coding, language reasoning). For example, Reflexion achieves a
91%% pass@ 1 accuracy on the HumanEval coding benchmark, surpassing the previ-
ous state-of-the-art GPT-4 that achieves 80%. We also conduct ablation and analysis
studies using different feedback signals, feedback incorporation methods, and agent
types, and provide insights into how they affect performance. We release all code,
demos, and datasets at https://github. com/noahshinn024/reflexion.

High Level Performance

GPT-3.5 and GPT-4 performance using zero-shot and agent workflows

® Zero-shot

® Reflection

@ Tool Use

@ Planning

@ Multi-Agent

O Intervenor
GPT-3.5 O zero-shot () ANPL O #?enegggag:::gem () LDB + Reflexion
HumanEval 40 45 50 %) 60 65 70 75 80 85 90 95 100
GPT-4 O zero-shot () CodeT () Reflexion
(O MetaGPT (O Agent Coder
() ANPL () Language Agent

" Tree Search

Performance of GPT-3.5 and GPT-4 (zero-shot) on HumanEval, along with algorithms that use agent workflows
on top of GPT-3.5 or GPT-4. Thanks to Joaquin Dominguez and John Santerre for help with this analysis.

Patterns for
Agentic
Applications

m X

Po

Reflection

The LLM examines its own work to come up with
ways to improve it

Tools use

The LLM is given tools such as web search, code
execution, or any other function to help it gather
information, take action, or process data

Planning

The LLM comes up with, and executes, a multistep
plan to achieve a goal (for example, writing an
outline for an essay, then doing online research,
then writing a draft, and so on)

Multi-agent
More than one Al agent work together, splitting up

tasks and discussing and debating ideas, to come
up with better solutions than a single agent would

Reflection and Tool use

Basic Reflection

=

1. User Request

Repeat
N tTimes

Reflect

&

li

—

Reflexion Actor

1. User Request

End. Respond to user

|

1

1

: Re_sponse_: VARAN
' Critique: AP
: Searchi A=

\

1
\

Revised Response ! Exzebe Tiok

Resf:onse; PG | ¢
Critique: Amaen ! —4.>

Searchi A= |
Citations: A=

o, 7
Repeat
N times
Revisor

Azure Open Al — Assistant AP|

Assistant Thread Run

Personal finance bot Retirement planning

OBIECT

Assistant

Thread

Message

Run

Run Step

Assistant Personal finance bot

Thread Retirement planning

User's message Steps
How much should | contribute to my
retirement plan?

'
Assistant’s message ¢ I

You should contribute $478 per year....

Create message

WHAT IT REPRESENTS

Purpose-built Al that uses OpenAl's models and calls tools

A conversation session between an Assistant and a user. Threads store Messages and
automatically handle truncation to fit content into a model’s context.

A message created by an Assistant or a user. Messages can include text, images, and other files.
Messages stored as a list on the Thread.

An invocation of an Assistant on a Thread. The Assistant uses its configuration and the Thread's
Messages to perform tasks by calling models and tools. As part of a Run, the Assistant appends
Messages to the Thread.

A detailed list of steps the Assistant took as part of a Run. An Assistant can call tools or create
Messages during its run. Examining Run Steps allows you to introspect how the Assistant is
getting to its final results.

Use code interpreter

queued

—

requires_action

in_progress

cancelling

expired

completed

failed

incomplete

cancelled

LangChain - LangGraph

4 L Graph
& 2¢ LangGrap

4 Building language agents as graphs 4

Overview

LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be
used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or

actors) across multiple steps of computation in a cyclic manner. It is inspired by Pregel and Apache Beam. The current

interface exposed is one inspired by NetworkX.

The main use is for adding cycles to your LLM application. Crucially, LangGraph is NOT optimized for only DAG
workflows. If you want to build a DAG, you should just use LangChain Expression Language.

Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.

h = hyde_hypotetic_doc_gene...

%W hyde_source_lookup

W' parentdoc_fewshot_lookup %) parentdoc_source_lookup W hyde_fewshot_lookup
N /_’, / \\\ L _
— _— ", — e
— 7 N — —
'S // \\ e
e parentdoc_context A hyde_context
I ..:.,-'. -\\\-
4 \
' v
@ hyde_prompt

Prompt Flow
Azure Al Studio

@ parentdoc_prompt
|

'

|
@ hyde_generation

=
@ parentdoc_generation

@ ensemble_prompt

@ ensemble_generation

A

,/”'-
/

v

outputs
\

Direct Cyclic Graph with LangGraph

decide_to_generate
(Conditional Edge)

generate
(Node)

grade_generation_v_documents (:> —
Yes

grade_generation_v_question
(Conditional Edge)

prepare_for_final_grade Yes —=> End

(Node)

Generation userful?

/)77’ No
Generation

\\Ez:pported?

No

(Conditional Edge)

{question,
documents,
generation}

——

retrieve grade_documents Ves (:)

(Node) (Node) T
i { tion, Any docs
estion. —>O—> fmy — O = R

Retrieve documents

}r No
{question} (::>

transform_query
(Node)

grade_generation_v_question

Direct Cyclic Graph (code) (condiionst Fdge)

prepare_for_final_grade Yes —— End
(Node)

grade_generation_v_documents (Z) —_— <i:) Generation userful?
(Conditional Edge) \\Q
Yes

decide_to_generate generate

(Conditional Edge) (Node) ./77 ‘o
{question .
. ! G t
retrieve grade_documents v (:) —= documents, —=> eneration
es tion} supported?
(Node) (Node) ¢ genera \\S§
{question} ——= O > {question, > = Any docs No
q documents} relevant?
Retrieve documents

T No
{question} (::>

transform_query
(Node)

retrieve(state): class GraphState(TypedDict):

return {"documents": documents, "question": question}

Represents the state of our graph.

generate(state):
... Attributes:
return {"documents": documents, "question": question, "generation": generation} guestion: question
generation: LLM generation
grade_documents(state): web_search: whether to add search

return {"documents": filtered_docs, "question": question, “"web_search": web_search} o I
question : str

A generation : str

return {"documents": documents, "question": better_question}\ web_search : str

documents : List[str]

transform_query(state):

Patterns for
Agentic
Applications

m X

Po

Reflection

The LLM examines its own work to come up with
ways to improve it

Tools use

The LLM is given tools such as web search, code
execution, or any other function to help it gather
information, take action, or process data

Planning

The LLM comes up with, and executes, a multistep
plan to achieve a goal (for example, writing an
outline for an essay, then doing online research,
then writing a draft, and so on)

Multi-agent
More than one Al agent work together, splitting up

tasks and discussing and debating ideas, to come
up with better solutions than a single agent would

£ CrewAl

Low code
I multi agents

2 Autogen

n

#GlobalAzure
#GlobalAzureMilano

Slides will be available on Global Azure 20211r age
on Azure Meetup Milano Web\:l\e

	Slide 1: Agenti Autonomi con Azure Open AI
	Slide 2: Agenti Autonomi con Azure Open AI
	Slide 3: Research Breakthroughs
	Slide 4: High Level Performance
	Slide 5: Foundation models are advancing exponentially
	Slide 6: Prompt Construction
	Slide 7: Technical Prompt Limits
	Slide 8: Research advancements on LLM capabilities
	Slide 9: High Level Performance
	Slide 10
	Slide 11: Reflection and Tool use
	Slide 12: Azure Open AI – Assistant API
	Slide 13: LangChain - LangGraph
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: THANK YOU!!!

