- mongoDB.

MongoDB Schema
Design Best Practices

Joe Karlsson | Developer Advocate | @JoeKarlsson1

Critical for improving the
performance and scalability
of your database

Why is schema

design so important?

@JoeKarlssonT)

name: “Joe Karlsson”,
company: “MongoDB”,
title: [
“Developer Advocate”,
“Software Engineer”
1,
twitter: “@JoeKarlssonl”,
twitch: “joe_karlsson”,
tiktok: “joekarlsson”,
website: “joekarlsson.com”,
opinions: “my own”,
links: “bit.ly/IoTKittyBox"”

@ Relational vs. MongoDB
Schema Design Approaches

‘ Embedding vs. Referencing

@ 7ypesof Relationships

@JoeKarlssonT)

@ Relational vs. MongoDB
Schema Design Approaches

‘ Embedding vs. Referencing

@ 7ypesof Relationships

@JoeKarlssonT)

Re
Sche

- mongoDB.

ational vs. M

ma Design A

ongoD

nproac

NES

- -"i:;;-.az
_ Corporate MU to find the differences

" between this picture and this picture.
A\

\ ,\

I\

0

\
\

1

Relational
Schema Design

Model data independent of queries

i What
#|l data do

“rescribed approaches

Normalize in the 3rd form

tl;ar:
Don't duplicate data

Users

1 |Paul Miller (44755750561 |London [45.123 47.232
1

Professions Cars

10 1 banking 20 1 Bentley 1973

111 finance 21 1 Rolls Royce 1965

12 1 trader

(@doeKaHsson1.

MongoDB
Schema Design

MongoDB
Schema

Design NO Rules
NO Process

No Algorithm

THERE ARE'NO RULES

Design a schema that will work well for a given application

MongoDB Schema Design

v

: {s}

{¢}{¥}

How to store the data Query Performance Reasonable amount of
hardware

al

\

Users

1 |Paul Miller (44755750561 |London [45.123 47.232
1

Professions Cars

10 1 banking 20 1 Bentley 1973

111 finance 21 1 Rolls Royce 1965

12 1 trader

(@doeKaHsson1.

Relational MongoDB

Users

first_name: "Paul",
surname: "Miller",

cell: "447557505611",
city: "London",

location: [45.123,47.232],

447557505611 | London

Relational

Users

447557505611 | London | 45.123

Professions

10 1 banking
111 finance

12 1 trader

MongoDB

first_name: "Paul",
surname: "Miller",

cell: "447557505611",
city: "London",

location: [45.123,47.232],

profession: ["banking", "finance", "trader"],

Relational MongoDB

Users

first_name: "Paul",
surname: "Miller",

cell: "447557505611",
city: "London",

location: [45.123,47.232],

P ro fe SS | ONS profession: ["banking”, "finance”, "trader"],

447557505611 | London

cars: [
{
.-_ model: "Bentley",
10 1 banking year: 1973
11 1 finance 1
12 1 trader model: "Rolls Royce",
year: 1965
}

Cars

Bentley 1973

Rolls Royce | 1965

2 N
l A
/ " ™
b £ 4 y 4 e
e

® Relational vs. MongoDB Schema Design Approacheéw";i;jffff“j'_‘?ifj_ig.;_?‘
© Relational Schema Design ¢

© Relational vs. MongoDB Schema Design Approachéé L0
@ Relational Schema Design
©® Model data independent of queries

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design

Model data independent of queries
Normalize in the 3rd form

1 | Paul Miller | 447557505611 | London | 45.123 47.232

20 1 Bentley 1973

© Relational vs. MongoDB Schema Design Approaches —« «
@ Relational Schema Design

@ Model data independent of queries
@ Normalize in the 3rd form

® MongoDB Schema Design {2}

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm
Considerations:

How to store the data
Query Performance

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm
Considerations:

How to store the data
Query Performance

Design a schema that works for%ur application

@ Relational vs. MongoDB
Schema Design Approaches

‘ Embedding vs. Referencing

@ 7ypesof Relationships

@JoeKarlssonT)

Embedding
vS. Referencing

Embedding

Embedding Join

IDay ...

Embedding

Pro Con
Retrieve all with
,et eve all data with a Large docs === more overhead
single query

Avoids expense JOINs or $lookup 16 MB Document size limit

% Update all data with a single
. .
atomic operation

QO

®

O 0O

Referencing

© 00 6

Pro

Smaller documents

Referencing
Con

Two queries or $lookup
required to retrieve all data

Less likely to reach 16 MB limit

No duplication of data

Infrequently accessed data
not accessed on every query

2 N
l A
/ " ™
b £ 4 y 4 e
-

® Relational vs. MongoDB Schema Design Approaches
® Embedding vs. Referencing

y
¥ L

® Relational vs. MongoDB Schema Design Approaches (A

@ Embedding vs. Referencing

® Embedding: {
_id : Objectld('AAA"),
name: 'Kate Monster',
ssn: '123-456-7890',
addresses: [
{
street: '123 Sesame St’,
city: '"Anytown’, cc: ‘USA'
3
{

street: '123 Avenue Q',
city: 'New York', .

cc: ‘USA'

}
]

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing

Embedding:
{
1 e ..
a: Mb"'
c:. .{
d: “e
i]
} 5[|

y ., B
.

© Relational vs. MongoDB Schema Design Approacheé 1P

@ Embedding vs. Referencing
© Embedding:

" Retrieve all data with a single query
" Avoids expense JOINs or $lookup

" Update all data with a single atomic operation

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Embedding:

Retrieve all data with a single query
Avoids expense JOINs or $lookup
Update all data with a single atomic operation

Large docs === more overhead

16 MB Document size limit

e
y 3 <0
/ 2
. v . S
¥ o E

9

© Relational vs. MongoDB Schema Design Approacheég;“’?'}fﬁf',‘j’i‘{:ﬁ,\?"f‘/"'*-;.
@ Embedding vs. Referencing |

© Embedding

O Referencing:{ {

name : 'left-handed smoke shifter', g _id : ObjectD('AAAA)),

manufacturer : 'Acme Corp/, o partno : '123-aff-456',
e name : '#4 grommet',

catalog_number: 1234, ‘,“ qty: 94
parts : [— cost: 0.94
ObjectID('AAAA),* orice: 3.99
{ .= === ObjectiD(BBBB)), .

_id : ObjectID('BBB'), 4** ObjectID('CCCC)

partno : '425-EFF-123',]

name : '#8 Frombet',)

qty: 13,

cost: 0.34,

price: 7.99

4 . .
/‘ e W
.

® Relational vs. MongoDB Schema Design Approaches -« "
@ Embedding vs. Referencing
© Embedding
@ Referencing:
" Smaller documents
" Lesslikely to reach 16 MB limit

" Noduplication of data

" Infrequently accessed data not accessed on ever

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Embedding
Referencing:
Smaller documents
Less likely to reach 16 MB limit
No duplication of data
Infrequently accessed data not accessed on every query

Two queries or Slookup required tc.etrieve all data]

@ Relational vs. MongoDB
Schema Design Approaches

‘ Embedding vs. Referencing

@ Types of Relationships

@JoeKarlssonT)

lypes of
Relationships

One to One

O ne tO O ne ® Use Key-Value pairs
User:

{
_id: ObjectId(“Ann"),

name: ’

company: ,

twitter: ’
twitch: “ "
[{ 14/

tiktok: ,
website: Z

One to Few

One to Few

{
_id: ObjectId(“Ann"),

4

name:) @ Prefer embedding

4 ”

company: ,

twitter: “ "

twitch: “ "

tiktok: “ "

website: * "

addresses: [
{ street: , city: , c€c: “USA" },
{ street: " ", city: “ ", cc: "USA” }

]

4] n [”

}

Rule 1:

-avor embedding unless
there isa compelling
reason not to.

Rule 2:

Needing to access an
object onitsownisa
compelling reason not to
embed It.

One to Many

O ne to M a ﬂy @ Prefer referencing

Products: Parts:

{ {
_id: ObjectId(“123"), _id: ObjectId(“ArA"),
name: * ", partno: * "
manufacturer: *“ " name: “ "
catalog_number: , qty: ;

s [cost: .
‘ ObjectId(“ "), I price: .
jectld(” "), }

ObjectId(“ccc”),
1

}

Rule 3:

Avoid JO
they can
If they ca

ne, but don”

' hbe a

Ns and Slookups if

‘rald

N provide a

schema design.

petter

One to Squillions

Oﬂe o SqU””OﬂS @ Prefer referencing

Hosts: Log Message:
{ {
. 4. . “ " _id: ObjectId(“123"),
il OEJeCtId() ,, time: ISODate(* "),
name: ’ . W ”
. . & ” . !
1paddr: ! |host: ObjectId(* "),I
' b
{

_id: ObjectId(“s56"),
time: ISODate(“ "),

e ¥ "
|host: ObjectId(* ")J

@dJoeKarlsson1 §

}

Rule 4:
Arrays should not
grow without bound.

Many to Many

Many to Many

Person:

{
_id: ObjectId(“ "),
name: “ e
tasks: [

[objectid(“anro™), |

ObjectId(“ ")y
ITmT"_"'),_,
1

}

@ Prefer referencing

Tasks:

{

| _id: ObjectId(“ ")
escription:

b
{

due_date: ISODate(*
owner: ObjectId(*

_id: ObjectId(“
description: “
due date: ISODate(*
owner: ObjectId(“

”),

”),

")’

b

")

")’

Rule b:

How you model your data
depends - entirely - on your

particular ap
access patte

nlication’s data

Nns.

4

v 4 .y Wy
“

3

© Relational vs. MongoDB Schema Design Approacheéﬁ‘i’f
@ Embeddingvs. Referencing Y,
® Types of Relationships

y ., B
/ Ve, .
.

® Relational vs. MongoDB Schema Design Approaches {8
@ Embedding vs. Referencing

@ Types of Relationships
® Oneto One: Use Key-Value pairs

{
_id: ObjectId(“Ann"),
name: “Joe Karlsson”,
company: “MongobB",
twitter: “@JoeKarlssonl”,
twitch: “joe_karlsson”,
tiktok: “joekarlsson”,
website: “joekarlsson.com” .

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing

Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding

{
_id: ObjectId(“Ann"),
name: “ s
company: “ "
twitter: “ "
website: “ "
addresses: [
{ street: “ ", city: “ " cc: “USA™ }, .

{ street: " " city: “ " oce: " "y

1
} a

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding
One to Many: Prefer Referencing

{
_id: ObjectId(“123"), {
name: “ "y _id: ObjectId(“~Arn"),
manufacturer: “ 7 partno: “ "
cataloanumber: c —_—— "
paglss
|0bjectId(“ "y, I qty: 94, .
Objectl) cost: ’
ObjectId(“ccc”), price: ,
’ } H
}

{

}

Relational vs. MongoDB Schema Design Approaches -

Embedding vs. Referencing R
time: ISODate(“
Types of Relationships [hose: orjoceraceamnsy.]

One to One: Use Key-Value pairs
One to Few: Prefer embedding
One to Many: Prefer Referencing

One to Squillions: Prefer Referencing
{

_id: ObjectId(“s56"),
time: ISODate(“ ”),
message: * "
_id: ObjectId(“sra™), Ihost: ObjectId(“Ann"), I .
name: *“ " }

ipaddr: “ " .

")'

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding

One to Many: Prefer Referencing
One to Squillions: Prefer Referencing
Many to Many: Prefer Referencingt

. I _id: ObjectId(“ ")
_id: ObjectId(“Arri"), { e — description: “
name: ° 7 T . due date: ISODate(“
tasks: [e = id: ObjectId(“ " I > .
ObjectId(“ADF9") N _escrlpJ1on° (" owner: ObjectId(“ "),
t , —" ° ! [
;ﬁium — due date: ISODate(* 4 "),
] owner: ObjectId(“ ") .

} }, .

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@ Avoid JOINs and Slookups if they can be avoided

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@® Avoid JOINs and Slookups if they can be avoided

@® Arrays should not grow without bound

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@® Avoid JOINs and Slookups if they can be avoided
@® Arrays should not grow without bound

@® How you model your data depends - entirely - on your
particular application’s data access patterns

Hybrid Approaches

(35

Not all documents i
need to have the sa

N a col

me fie

ection
ds.

Polymorphic Pattern

{

_id: ObjectId(“

[

name:

company:
twitter:

twitch:
tiktok:

website:

1]

"),

?

?

{

}

_id: ObjectId(“

name: -
city: “

"),

/magine you are
pbuilding a Twitter like
soclal media site...

A Normal User
{

_id: “

disaplyName:
numFollowers:
followers: [

({4 12/
!
({4 ”
?

({4

({4

124

124

”

124

But what If
KIm Kardashian
joined your site?

Outlier Pattern

{ {
_id : [} 144 , _id : 1
disply_name: * " twitter_id: “
num_followers: “ " is_overflow: *“
followers: [followers: [
[} 144) & 144 ,
[} 144 , [} 12/ ,
[} 144) & 144 ,
1, 1,
has_extras: true has_extras: true

But walt, there are a
ton of other patternsin
your tool belt

Use Case Categories

00\ .(,9
Q&&\o& .oo 0\%&\
& & ,,&Q 0?9. 3
o & &° o\\<§ -
@ F LS & X &°
& L& @0 e o2° o8
Approximation
Attribute
Bucket
Computed
« Document Versioning
£ Extended Reference
£ outlier
g Preallocated
Polymorphic
Schema Versioning
Subset
Tree and Graph

@JoeKarlssonl)

https://www.mongodb.com/blog/post/building-with-patterns-a-summary

2 N
l A
/ " ™
b £ 4 y 4 e
e

® Relational vs. MongoDB Schema Design Approacheéw";i;jffff“j'_‘?ifj_ig.;_?‘
© Relational Schema Design ¢

© Relational vs. MongoDB Schema Design Approachéé L0
@ Relational Schema Design
©® Model data independent of queries

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design

Model data independent of queries
Normalize in the 3rd form

1 | Paul Miller | 447557505611 | London | 45.123 47.232

20 1 Bentley 1973

© Relational vs. MongoDB Schema Design Approaches —« «
@ Relational Schema Design

@ Model data independent of queries
@ Normalize in the 3rd form

® MongoDB Schema Design {2}

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm
Considerations:

How to store the data
Query Performance

Relational vs. MongoDB Schema Design Approaches -
Relational Schema Design
Model data independent of queries
Normalize in the 3rd form
MongoDB Schema Design {2}
No rules, no process, no algorithm
Considerations:

How to store the data
Query Performance

Design a schema that works for%ur application

2 N
l A
/ " ™
b £ 4 y 4 e
-

® Relational vs. MongoDB Schema Design Approaches
® Embedding vs. Referencing

y
¥ L

® Relational vs. MongoDB Schema Design Approaches (A

@ Embedding vs. Referencing

® Embedding: {
_id : Objectld('AAA"),
name: 'Kate Monster',
ssn: '123-456-7890',
addresses: [
{
street: '123 Sesame St’,
city: '"Anytown’, cc: ‘USA'
3
{

street: '123 Avenue Q',
city: 'New York', .

cc: ‘USA'

}
]

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing

Embedding:
{
1 e ..
a: Mb"'
c:. .{
d: “e
i]
} 5[|

y ., B
.

© Relational vs. MongoDB Schema Design Approacheé 1P

@ Embedding vs. Referencing
© Embedding:

" Retrieve all data with a single query
" Avoids expense JOINs or $lookup

" Update all data with a single atomic operation

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Embedding:

Retrieve all data with a single query
Avoids expense JOINs or $lookup
Update all data with a single atomic operation

Large docs === more overhead

16 MB Document size limit

e
y 3 <0
/ 2
. v . S
¥ o E

9

© Relational vs. MongoDB Schema Design Approacheég;“’?'}fﬁf',‘j’i‘{:ﬁ,\?"f‘/"'*-;.
@ Embedding vs. Referencing |

© Embedding

O Referencing:{ {

name : 'left-handed smoke shifter', g _id : ObjectD('AAAA)),

manufacturer : 'Acme Corp/, o partno : '123-aff-456',
e name : '#4 grommet',

catalog_number: 1234, ‘,“ qty: 94
parts : [— cost: 0.94
ObjectID('AAAA),* orice: 3.99
{ .= === ObjectiD(BBBB)), .

_id : ObjectID('BBB'), 4** ObjectID('CCCC)

partno : '425-EFF-123',]

name : '#8 Frombet',)

qty: 13,

cost: 0.34,

price: 7.99

4 . .
/‘ e W
.

® Relational vs. MongoDB Schema Design Approaches -« "
@ Embedding vs. Referencing
© Embedding
@ Referencing:
" Smaller documents
" Lesslikely to reach 16 MB limit

" Noduplication of data

" Infrequently accessed data not accessed on ever

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Embedding
Referencing:
Smaller documents
Less likely to reach 16 MB limit
No duplication of data
Infrequently accessed data not accessed on every query

Two queries or Slookup required tc.etrieve all data]

4

v 4 .y Wy
“

3

© Relational vs. MongoDB Schema Design Approacheéﬁ‘i’f
@ Embeddingvs. Referencing Y,
® Types of Relationships

y ., B
/ Ve, .
.

® Relational vs. MongoDB Schema Design Approaches {8
@ Embedding vs. Referencing

@ Types of Relationships
® Oneto One: Use Key-Value pairs

{
_id: ObjectId(“Ann"),
name: “Joe Karlsson”,
company: “MongobB",
twitter: “@JoeKarlssonl”,
twitch: “joe_karlsson”,
tiktok: “joekarlsson”,
website: “joekarlsson.com” .

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing

Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding

{
_id: ObjectId(“Ann"),
name: “ s
company: “ "
twitter: “ "
website: “ "
addresses: [
{ street: “ ", city: “ " cc: “USA™ }, .

{ street: " " city: “ " oce: " "y

1
} a

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding
One to Many: Prefer Referencing

{
_id: ObjectId(“123"), {
name: “ "y _id: ObjectId(“~Arn"),
manufacturer: “ 7 partno: “ "
cataloanumber: c —_—— "
paglss
|0bjectId(“ "y, I qty: 94, .
Objectl) cost: ’
ObjectId(“ccc”), price: ,
’ } H
}

{

}

Relational vs. MongoDB Schema Design Approaches -

Embedding vs. Referencing R
time: ISODate(“
Types of Relationships [hose: orjoceraceamnsy.]

One to One: Use Key-Value pairs
One to Few: Prefer embedding
One to Many: Prefer Referencing

One to Squillions: Prefer Referencing
{

_id: ObjectId(“s56"),
time: ISODate(“ ”),
message: * "
_id: ObjectId(“sra™), Ihost: ObjectId(“Ann"), I .
name: *“ " }

ipaddr: “ " .

")'

Relational vs. MongoDB Schema Design Approaches -
Embedding vs. Referencing
Types of Relationships

One to One: Use Key-Value pairs
One to Few: Prefer embedding

One to Many: Prefer Referencing
One to Squillions: Prefer Referencing
Many to Many: Prefer Referencingt

. I _id: ObjectId(“ ")
_id: ObjectId(“Arri"), { e — description: “
name: ° 7 T . due date: ISODate(“
tasks: [e = id: ObjectId(“ " I > .
ObjectId(“ADF9") N _escrlpJ1on° (" owner: ObjectId(“ "),
t , —" ° ! [
;ﬁium — due date: ISODate(* 4 "),
] owner: ObjectId(“ ") .

} }, .

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@ Avoid JOINs and Slookups if they can be avoided

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@® Avoid JOINs and Slookups if they can be avoided

@® Arrays should not grow without bound

MongoDB Schema Design Rules

@ Favor embedding unless there is a compelling reason not to

@® Needingtoaccess an object onits own is a compelling
reason not to embed it

@® Avoid JOINs and Slookups if they can be avoided
@® Arrays should not grow without bound

@® How you model your data depends - entirely - on your
particular application’s data access patterns

Juestions?

What's Next?

‘ university.mongodb.com
MongoDB

Community

‘ Recommended Course:
M3520: Data Modeling

@JoeKarlssonT)

Want S100 in FREE MongoDB Atlas
credits?

Use code JoeK100

Additional

Resources

Modeling:_https://university.mongodb.com/
courses/M320/about

6 Rules of Thumb for MongoDB Schema Design:
Part 1: https://www.mongodb.com/blog/post/6-
rules-of-thumb-for-mongodb-schema-design-

part-1

Data Model Design: https://docs.mongodb.com/
manual/core/data-model-design/

Data Model Examples and Patterns: https://
docs.mongodb.com/manual/applications/data-
models/

Building with Patterns: A Summary: https://

www.mongodb.com/blog/post/building-with-
patterns-a-summary @JoeKarlssonT

https://university.mongodb.com/courses/M320/about
https://university.mongodb.com/courses/M320/about
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://docs.mongodb.com/manual/core/data-model-design/
https://docs.mongodb.com/manual/core/data-model-design/
https://docs.mongodb.com/manual/applications/data-models/
https://docs.mongodb.com/manual/applications/data-models/
https://docs.mongodb.com/manual/applications/data-models/
https://www.mongodb.com/blog/post/building-with-patterns-a-summary
https://www.mongodb.com/blog/post/building-with-patterns-a-summary
https://www.mongodb.com/blog/post/building-with-patterns-a-summary

name: “Joe Karlsson”,
company: “MongoDB”,
title: [
“Developer Advocate”,
“Software Engineer”
1,
twitter: “@JoeKarlssonl”,
twitch: “joe_karlsson”,
tiktok: “joekarlsson”,
website: “joekarlsson.com”,
opinions: “my own”,
links: “bit.ly/IoTKittyBox"”

mJoeKarlssonl

name: “Joe Karlsson”,
company: “MongoDB”,
title: [
“Developer Advocate”,
“Software Engineer”
1,
twitter: “@JoeKarlssonl”,
twitch: “joe_karlsson”,
tiktok: “joekarlsson”,
website: “joekarlsson.com”,
opinions: “my own”,
links: “bit.ly/IoTKittyBox"”

@JoeKarlssonT .

