

DEV01

Messaging con Rebus.net: da 0 a CQRS in 60

minuti
Andrea Saltarello

Solution Architect @ Managed Designs S.r.l. | Presidente UGIdotNET

Microsoft Regional Director

@andysal74

Me.About();

• Solution Architect @ Managed Designs

•Microsoft MVP since 2003

•Microsoft Regional Director

•Author (along with Dino) of .NET: Architecting Applications for the Enterprise, by Microsoft
Press

•Basically, a software architect developer eager to write code

http://www.manageddesigns.it/
http://www.amazon.com/Microsoft-NET-Architecting-Applications-Enterprise/dp/0735685355

Demos.About();

All demos (but one) are based on Merp, a GPL’ed Micro ERP I developed (and still do, to an
extent) as the companion project for my book.

It’s ”free as in speech”, so:

1. Download & unzip it

2. Open the .sln file in Visual Studio

3. Run Update-Database (x2)

4. Enjoy time travelling

Newer builds will be published here:

http://www.github.com/mastreeno

https://naa4e.codeplex.com/SourceControl/list/changesets
http://www.github.com/mastreeno

The (Relational) Lord of the Rings

A few fancy dressed blokes going on a jaunt

It really became clear to me in the last couple of years that we need a new building block
and that is the Domain Event.

[Eric Evans]

An event is something that has happened in the past.

[Greg Young]

A domain event … captures the memory of something interesting which affects the domain

[Martin Fowler]

Event Sourcing in a nutshell

Instead of focusing on a system’s last known state, we might note down every occurring
event: this way, we would be able to (re)build the state the system was in at any point in
time just replaying those events

To cut a long story short: we’d end up recording an event stream

JobOrderStarted InvoiceIssuedJobOrderExtended JobOrderCompleted

What’s an event, anyway?

The (immutable) composition of:
•A (meaningful) name

• (Typed) Attributes

InvoiceIssued

DateOfIssue

Customer

Price

ProjectStarted

DateOfStart

ProjectId

ProjectCompleted

DateOfCompletion

ProjectId

ProjectRegistered

DateOfRegistration

DateOfEstimatedCompletion

ProjectId

CustomerId

Price

#FutureDecoded

DEMO

Event Stream

Event Stream vs. «My application»

Still, my users are more interested in knowing a job order’s balance or whether an invoice
has been paid. (cit.)

That is, we need a way to produce an entity state

Event Sourcing <3 DDD

DDD’s Aggregates provide a convenient way to encapsulate event management

Aggregate: A collection of objects that are bound together by a root entity, otherwise known
as an aggregate root. The aggregate root guarantees the consistency of changes being
made within the aggregate.

[Wikipedia]

An aggregate is responsible for:

• encapsulating business logic pertaining to an “entity”

• generating events to have them available for saving

• replaying events in order to rebuild a specific state

https://en.wikipedia.org/wiki/Domain-driven_design

#FutureDecoded

DEMO

Aggregates

Aggregates vs. Events vs. Repos

var aggr = repository.GetById<TAggr>(id); //Triggers [time travelling] event replay

aggr.DoSomething(); //Biz logic + events

repository.Save(aggr); //Updates the event stream

Repository: Mediates between the domain and data mapping layers using a collection-like interface
for accessing domain objects. [DDD]

#FutureDecoded

DEMO

Time Travelling

Event Stream vs. «My application»

Still², my users are more interested in knowing a job order’s balance or whether an invoice
has been paid. Quickly.

Ways to achieve that:

• Snapshots can help

•CQRS to the rescue: let’s have a database storing the usual «last known system state» using
it as a read model

Enter CQRS

Acronym for Command Query Responsibility Segregation

Basically, ad hoc application stacks for either “writing” or reading:

• “Command” stack writes events and snapshots

• “Read” stack reads from eventually consistent, reading purposes optimized database(s)

CQRS: the “Read” side of the Force

As a business unit manager, I want to collect credits due to unpaid outgoing invoices
#ubiquitouslanguage #nuffsaid

CQRS/ES wise, this user story could be implemented by means of the following real world C#
code:

Database.OutgoingInvoices.
.PerBusinessUnit(businessUnitId)
.ExpiredOnly()
.Select(i => new {InvoiceNumber = i.Number, CustomerId = i.Customer.Id})
.AsParallel()
.ForAll(i => bus.Send(new CollectDebtCommand(i.InvoiceNumber, i.CustomerId)));

#FutureDecoded

DEMO

Read Model

CQRS/ES in a nutshell

1. Application sends a command to the system

2. Command execution might alter the system’s state and then raise events to state
success/failure

3. Events are notified to interested subscribers (a.k.a. handlers), such as:
• Workflow managers (a.k.a. «Sagas») which could execute more commands

• Denormalizers, which will update the read model database

Note: command/event dispatch/execution will usually be managed by a Mediator («bus»)

Application
Layer

Snapshots

Event store

Read stack

Domain Layer

Ad-hoc DBHandlers

Command Event Data

Handlers

Model Services
B
U
S

CQRS/ES at a glance

#FutureDecoded

DEMO

Handlers

Enter Rebus.net

Rebus.net:

• is an open source, production tested bus for .NET. Source code is available on Github, but
usually Nuget packages will do.

•provides much-needed features such as:
• Fault tolerance
• Scalability
• Events’ scheduling
• Easy migration from on premises to cloud based

•Requires:
• a transport protocol (e.g.: MSMQ, RabbitMQ, Azure Service Bus, Amazon Sqs, ...)
• an IoC container (e.g.: Autofac, Ninject, .NET Core ServiceProvider, StructureMap, Unity, Windsor...)
• a storage (e.g.: MongoDB, RavenDb, SQL Server, ...)

#FutureDecoded

DEMO

Configuration
Back to the Future

Azure <3 CQRS

Worker Role(s)Web App

Application
Layer

Snapshots

Event store

Read stack

Domain Layer

Ad-hoc DBHandlers

Command Event Data

Handlers

Model Services

A
S
B

Look ma, a microservice!

Both web App(s) and worker role(s) can be:

• Evolved

•Deployed

•Configured (e.g.: scaled)

independently

GRAZIE!

